| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56c | Structured version Visualization version GIF version | ||
| Description: Lemma for frege57c 43911. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege56c.b | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| frege56c | ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege56c.b | . . . . 5 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | 1 | frege54cor1c 43906 | . . . 4 ⊢ [𝐵 / 𝑥]𝑥 = 𝐵 |
| 3 | frege53c 43905 | . . . 4 ⊢ ([𝐵 / 𝑥]𝑥 = 𝐵 → (𝐵 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (𝐵 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) |
| 5 | frege55lem1c 43907 | . . 3 ⊢ ((𝐵 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝐵 = 𝐴 → 𝐴 = 𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (𝐵 = 𝐴 → 𝐴 = 𝐵) |
| 7 | frege9 43803 | . 2 ⊢ ((𝐵 = 𝐴 → 𝐴 = 𝐵) → ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)))) | |
| 8 | 6, 7 | ax-mp 5 | 1 ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege52c 43879 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sbc 3771 df-sn 4607 |
| This theorem is referenced by: frege57c 43911 |
| Copyright terms: Public domain | W3C validator |