Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege56c Structured version   Visualization version   GIF version

Theorem frege56c 41073
Description: Lemma for frege57c 41074. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege56c.b 𝐵𝐶
Assertion
Ref Expression
frege56c ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem frege56c
StepHypRef Expression
1 frege56c.b . . . . 5 𝐵𝐶
21frege54cor1c 41069 . . . 4 [𝐵 / 𝑥]𝑥 = 𝐵
3 frege53c 41068 . . . 4 ([𝐵 / 𝑥]𝑥 = 𝐵 → (𝐵 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵))
42, 3ax-mp 5 . . 3 (𝐵 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵)
5 frege55lem1c 41070 . . 3 ((𝐵 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) → (𝐵 = 𝐴𝐴 = 𝐵))
64, 5ax-mp 5 . 2 (𝐵 = 𝐴𝐴 = 𝐵)
7 frege9 40966 . 2 ((𝐵 = 𝐴𝐴 = 𝐵) → ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))))
86, 7ax-mp 5 1 ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  [wsbc 3680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-frege1 40944  ax-frege2 40945  ax-frege8 40963  ax-frege52c 41042
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-sbc 3681  df-sn 4517
This theorem is referenced by:  frege57c  41074
  Copyright terms: Public domain W3C validator