![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege58c | Structured version Visualization version GIF version |
Description: Principle related to sp 2184. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege58c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege58c | ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58c.a | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ax-frege58b 43863 | . . . . 5 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
3 | sbsbc 3808 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
5 | dfsbcq 3806 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
6 | 4, 5 | imbitrid 244 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
7 | 6 | vtocleg 3565 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 [wsb 2064 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-frege58b 43863 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: frege59c 43884 frege60c 43885 frege61c 43886 frege62c 43887 frege67c 43892 frege72 43897 frege118 43943 frege120 43945 |
Copyright terms: Public domain | W3C validator |