Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege58c | Structured version Visualization version GIF version |
Description: Principle related to sp 2178. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege58c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege58c | ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58c.a | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ax-frege58b 41398 | . . . . 5 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
3 | sbsbc 3715 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
5 | dfsbcq 3713 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
6 | 4, 5 | syl5ib 243 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
7 | 6 | vtocleg 3511 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 [wsb 2068 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-frege58b 41398 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: frege59c 41419 frege60c 41420 frege61c 41421 frege62c 41422 frege67c 41427 frege72 41432 frege118 41478 frege120 41480 |
Copyright terms: Public domain | W3C validator |