Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege58c Structured version   Visualization version   GIF version

Theorem frege58c 41418
Description: Principle related to sp 2178. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege58c.a 𝐴𝐵
Assertion
Ref Expression
frege58c (∀𝑥𝜑[𝐴 / 𝑥]𝜑)

Proof of Theorem frege58c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frege58c.a . 2 𝐴𝐵
2 ax-frege58b 41398 . . . . 5 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
3 sbsbc 3715 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
42, 3sylib 217 . . . 4 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
5 dfsbcq 3713 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
64, 5syl5ib 243 . . 3 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
76vtocleg 3511 . 2 (𝐴𝐵 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
81, 7ax-mp 5 1 (∀𝑥𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  [wsb 2068  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-frege58b 41398
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  frege59c  41419  frege60c  41420  frege61c  41421  frege62c  41422  frege67c  41427  frege72  41432  frege118  41478  frege120  41480
  Copyright terms: Public domain W3C validator