| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege58c | Structured version Visualization version GIF version | ||
| Description: Principle related to sp 2184. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege58c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege58c | ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege58c.a | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ax-frege58b 43892 | . . . . 5 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 3 | sbsbc 3774 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
| 5 | dfsbcq 3772 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | 4, 5 | imbitrid 244 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 7 | 6 | vtocleg 3537 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-frege58b 43892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: frege59c 43913 frege60c 43914 frege61c 43915 frege62c 43916 frege67c 43921 frege72 43926 frege118 43972 frege120 43974 |
| Copyright terms: Public domain | W3C validator |