| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege58c | Structured version Visualization version GIF version | ||
| Description: Principle related to sp 2186. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege58c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege58c | ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege58c.a | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ax-frege58b 44004 | . . . . 5 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 3 | sbsbc 3740 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
| 5 | dfsbcq 3738 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 6 | 4, 5 | imbitrid 244 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 7 | 6 | vtocleg 3506 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2111 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-frege58b 44004 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: frege59c 44025 frege60c 44026 frege61c 44027 frege62c 44028 frege67c 44033 frege72 44038 frege118 44084 frege120 44086 |
| Copyright terms: Public domain | W3C validator |