Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege64b Structured version   Visualization version   GIF version

Theorem frege64b 41406
Description: Lemma for frege65b 41407. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege64b (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒)))

Proof of Theorem frege64b
StepHypRef Expression
1 frege62b 41404 . 2 ([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓𝜒) → [𝑧 / 𝑦]𝜒))
2 frege18 41315 . 2 (([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓𝜒) → [𝑧 / 𝑦]𝜒)) → (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))))
31, 2ax-mp 5 1 (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege58b 41398
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  frege65b  41407
  Copyright terms: Public domain W3C validator