|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege64b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65b 43928. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege64b | ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege62b 43925 | . 2 ⊢ ([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) | |
| 2 | frege18 43836 | . 2 ⊢ (([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) → (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege58b 43919 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 | 
| This theorem is referenced by: frege65b 43928 | 
| Copyright terms: Public domain | W3C validator |