| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege64b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65b 43901. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege64b | ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege62b 43898 | . 2 ⊢ ([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) | |
| 2 | frege18 43809 | . 2 ⊢ (([𝑧 / 𝑦]𝜓 → (∀𝑦(𝜓 → 𝜒) → [𝑧 / 𝑦]𝜒)) → (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege58b 43892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: frege65b 43901 |
| Copyright terms: Public domain | W3C validator |