Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege68c Structured version   Visualization version   GIF version

Theorem frege68c 41428
Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege68c ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))

Proof of Theorem frege68c
StepHypRef Expression
1 frege57aid 41369 . 2 ((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑))
2 frege59c.a . . 3 𝐴𝐵
32frege67c 41427 . 2 (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑)))
41, 3ax-mp 5 1 ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege52a 41354  ax-frege58b 41398
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  frege70  41430  frege77  41437  frege116  41476
  Copyright terms: Public domain W3C validator