| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege68c | Structured version Visualization version GIF version | ||
| Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege68c | ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege57aid 43833 | . 2 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) | |
| 2 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 2 | frege67c 43891 | . 2 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 [wsbc 3761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege52a 43818 ax-frege58b 43862 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3762 |
| This theorem is referenced by: frege70 43894 frege77 43901 frege116 43940 |
| Copyright terms: Public domain | W3C validator |