Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege68c Structured version   Visualization version   GIF version

Theorem frege68c 43255
Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege68c ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))

Proof of Theorem frege68c
StepHypRef Expression
1 frege57aid 43196 . 2 ((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑))
2 frege59c.a . . 3 𝐴𝐵
32frege67c 43254 . 2 (((∀𝑥𝜑𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑)))
41, 3ax-mp 5 1 ((∀𝑥𝜑𝜓) → (𝜓[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wcel 2098  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-frege1 43114  ax-frege2 43115  ax-frege8 43133  ax-frege52a 43181  ax-frege58b 43225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-sbc 3773
This theorem is referenced by:  frege70  43257  frege77  43264  frege116  43303
  Copyright terms: Public domain W3C validator