| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege68c | Structured version Visualization version GIF version | ||
| Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege68c | ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege57aid 43904 | . 2 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) | |
| 2 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 2 | frege67c 43962 | . 2 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-frege1 43822 ax-frege2 43823 ax-frege8 43841 ax-frege52a 43889 ax-frege58b 43933 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: frege70 43965 frege77 43972 frege116 44011 |
| Copyright terms: Public domain | W3C validator |