| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege68c | Structured version Visualization version GIF version | ||
| Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| frege68c | ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege57aid 43830 | . 2 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) | |
| 2 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 2 | frege67c 43888 | . 2 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 [wsbc 3772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege52a 43815 ax-frege58b 43859 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3773 |
| This theorem is referenced by: frege70 43891 frege77 43898 frege116 43937 |
| Copyright terms: Public domain | W3C validator |