Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > freld | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
freld.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
freld | ⊢ (𝜑 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freld.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frel 6605 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5594 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: focofo 6701 limsupvaluz 43249 sssmf 44274 f1cof1blem 44568 funfocofob 44570 |
Copyright terms: Public domain | W3C validator |