| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > freld | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| freld.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| freld | ⊢ (𝜑 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freld.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | frel 6675 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5636 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: focofo 6767 1arithidom 33481 evlselvlem 42547 limsupvaluz 45679 sssmf 46709 f1cof1blem 47048 funfocofob 47052 |
| Copyright terms: Public domain | W3C validator |