MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freld Structured version   Visualization version   GIF version

Theorem freld 6590
Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
freld.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
freld (𝜑 → Rel 𝐹)

Proof of Theorem freld
StepHypRef Expression
1 freld.1 . 2 (𝜑𝐹:𝐴𝐵)
2 frel 6589 . 2 (𝐹:𝐴𝐵 → Rel 𝐹)
31, 2syl 17 1 (𝜑 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5585  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  focofo  6685  limsupvaluz  43139  sssmf  44161  f1cof1blem  44455  funfocofob  44457
  Copyright terms: Public domain W3C validator