Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   GIF version

Theorem limsupvaluz 43139
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m (𝜑𝑀 ∈ ℤ)
limsupvaluz.z 𝑍 = (ℤ𝑀)
limsupvaluz.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupvaluz (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
2 limsupvaluz.f . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
3 limsupvaluz.z . . . . . 6 𝑍 = (ℤ𝑀)
43fvexi 6770 . . . . 5 𝑍 ∈ V
54a1i 11 . . . 4 (𝜑𝑍 ∈ V)
62, 5fexd 7085 . . 3 (𝜑𝐹 ∈ V)
7 uzssre 12533 . . . . 5 (ℤ𝑀) ⊆ ℝ
83, 7eqsstri 3951 . . . 4 𝑍 ⊆ ℝ
98a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
10 limsupvaluz.m . . . 4 (𝜑𝑀 ∈ ℤ)
113uzsup 13511 . . . 4 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1210, 11syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
131, 6, 9, 12limsupval2 15117 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
149mptima2 42680 . . . 4 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
15 oveq1 7262 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞))
1615imaeq2d 5958 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞)))
1716ineq1d 4142 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*))
1817supeq1d 9135 . . . . . . . 8 (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
1918cbvmptv 5183 . . . . . . 7 (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019a1i 11 . . . . . 6 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )))
21 fimass 6605 . . . . . . . . . . . 12 (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
222, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
23 df-ss 3900 . . . . . . . . . . . 12 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2423biimpi 215 . . . . . . . . . . 11 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2522, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2625adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
27 df-ima 5593 . . . . . . . . . 10 (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))
2827a1i 11 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)))
292freld 6590 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
30 resindm 5929 . . . . . . . . . . . . 13 (Rel 𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3129, 30syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
33 incom 4131 . . . . . . . . . . . . . . 15 ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞))
343ineq1i 4139 . . . . . . . . . . . . . . 15 (𝑍 ∩ (𝑛[,)+∞)) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3533, 34eqtri 2766 . . . . . . . . . . . . . 14 ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
372fdmd 6595 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
3837ineq2d 4143 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
3938adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
403eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4140biimpi 215 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4241adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
4342uzinico2 42990 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (ℤ𝑛) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
4436, 39, 433eqtr4d 2788 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ𝑛))
4544reseq2d 5880 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ𝑛)))
4632, 45eqtr3d 2780 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ𝑛)))
4746rneqd 5836 . . . . . . . . 9 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ𝑛)))
4826, 28, 473eqtrd 2782 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = ran (𝐹 ↾ (ℤ𝑛)))
4948supeq1d 9135 . . . . . . 7 ((𝜑𝑛𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
5049mpteq2dva 5170 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5120, 50eqtrd 2778 . . . . 5 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5251rneqd 5836 . . . 4 (𝜑 → ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5314, 52eqtrd 2778 . . 3 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5453infeq1d 9166 . 2 (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
55 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
5655reseq2d 5880 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
5756rneqd 5836 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
5857supeq1d 9135 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
5958cbvmptv 5183 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6059rneqi 5835 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6160infeq1i 9167 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < )
6261a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
6313, 54, 623eqtrd 2782 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  infcinf 9130  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cz 12249  cuz 12511  [,)cico 13010  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fl 13440  df-limsup 15108
This theorem is referenced by:  limsupvaluzmpt  43148  limsupvaluz2  43169  limsupgtlem  43208
  Copyright terms: Public domain W3C validator