Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   GIF version

Theorem limsupvaluz 40578
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m (𝜑𝑀 ∈ ℤ)
limsupvaluz.z 𝑍 = (ℤ𝑀)
limsupvaluz.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupvaluz (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . 3 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
2 limsupvaluz.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
3 limsupvaluz.z . . . . . . 7 𝑍 = (ℤ𝑀)
43fvexi 6389 . . . . . 6 𝑍 ∈ V
54a1i 11 . . . . 5 (𝜑𝑍 ∈ V)
62, 5fexd 39946 . . . 4 (𝜑𝐹 ∈ V)
76elexd 3367 . . 3 (𝜑𝐹 ∈ V)
8 uzssre 40257 . . . . 5 (ℤ𝑀) ⊆ ℝ
93, 8eqsstri 3795 . . . 4 𝑍 ⊆ ℝ
109a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
11 limsupvaluz.m . . . 4 (𝜑𝑀 ∈ ℤ)
123uzsup 12870 . . . 4 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1311, 12syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
141, 7, 10, 13limsupval2 14496 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
1510mptima2 40099 . . . 4 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
16 oveq1 6849 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞))
1716imaeq2d 5648 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞)))
1817ineq1d 3975 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*))
1918supeq1d 8559 . . . . . . . 8 (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019cbvmptv 4909 . . . . . . 7 (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2120a1i 11 . . . . . 6 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )))
22 fimass 6263 . . . . . . . . . . . 12 (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
232, 22syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
24 df-ss 3746 . . . . . . . . . . . 12 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2524biimpi 207 . . . . . . . . . . 11 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2726adantr 472 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
28 df-ima 5290 . . . . . . . . . 10 (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))
2928a1i 11 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)))
302freld 40069 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
31 resindm 5621 . . . . . . . . . . . . 13 (Rel 𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3230, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3332adantr 472 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
34 incom 3967 . . . . . . . . . . . . . . 15 ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞))
353ineq1i 3972 . . . . . . . . . . . . . . 15 (𝑍 ∩ (𝑛[,)+∞)) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3634, 35eqtri 2787 . . . . . . . . . . . . . 14 ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3736a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
382fdmd 6232 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
3938ineq2d 3976 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
4039adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
413eleq2i 2836 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4241biimpi 207 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4342adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
4443uzinico2 40427 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (ℤ𝑛) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
4537, 40, 443eqtr4d 2809 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ𝑛))
4645reseq2d 5565 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ𝑛)))
4733, 46eqtr3d 2801 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ𝑛)))
4847rneqd 5521 . . . . . . . . 9 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ𝑛)))
4927, 29, 483eqtrd 2803 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = ran (𝐹 ↾ (ℤ𝑛)))
5049supeq1d 8559 . . . . . . 7 ((𝜑𝑛𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
5150mpteq2dva 4903 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5221, 51eqtrd 2799 . . . . 5 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5352rneqd 5521 . . . 4 (𝜑 → ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5415, 53eqtrd 2799 . . 3 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5554infeq1d 8590 . 2 (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
56 fveq2 6375 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
5756reseq2d 5565 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
5857rneqd 5521 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
5958supeq1d 8559 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6059cbvmptv 4909 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6160rneqi 5520 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6261infeq1i 8591 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < )
6362a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
6414, 55, 633eqtrd 2803 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cin 3731  wss 3732  cmpt 4888  dom cdm 5277  ran crn 5278  cres 5279  cima 5280  Rel wrel 5282  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  infcinf 8554  cr 10188  +∞cpnf 10325  *cxr 10327   < clt 10328  cz 11624  cuz 11886  [,)cico 12379  lim supclsp 14486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-ico 12383  df-fl 12801  df-limsup 14487
This theorem is referenced by:  limsupvaluzmpt  40587  limsupvaluz2  40608  limsupgtlem  40647
  Copyright terms: Public domain W3C validator