Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   GIF version

Theorem limsupvaluz 45663
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m (𝜑𝑀 ∈ ℤ)
limsupvaluz.z 𝑍 = (ℤ𝑀)
limsupvaluz.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupvaluz (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
2 limsupvaluz.f . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
3 limsupvaluz.z . . . . . 6 𝑍 = (ℤ𝑀)
43fvexi 6920 . . . . 5 𝑍 ∈ V
54a1i 11 . . . 4 (𝜑𝑍 ∈ V)
62, 5fexd 7246 . . 3 (𝜑𝐹 ∈ V)
7 uzssre 12897 . . . . 5 (ℤ𝑀) ⊆ ℝ
83, 7eqsstri 4029 . . . 4 𝑍 ⊆ ℝ
98a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
10 limsupvaluz.m . . . 4 (𝜑𝑀 ∈ ℤ)
113uzsup 13899 . . . 4 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1210, 11syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
131, 6, 9, 12limsupval2 15512 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
149mptimass 6092 . . . 4 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
15 oveq1 7437 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞))
1615imaeq2d 6079 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞)))
1716ineq1d 4226 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*))
1817supeq1d 9483 . . . . . . . 8 (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
1918cbvmptv 5260 . . . . . . 7 (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019a1i 11 . . . . . 6 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )))
21 fimass 6756 . . . . . . . . . . . 12 (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
222, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
23 dfss2 3980 . . . . . . . . . . . 12 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2423biimpi 216 . . . . . . . . . . 11 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2522, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2625adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
27 df-ima 5701 . . . . . . . . . 10 (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))
2827a1i 11 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)))
292freld 6742 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
30 resindm 6049 . . . . . . . . . . . . 13 (Rel 𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3129, 30syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
33 incom 4216 . . . . . . . . . . . . . . 15 ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞))
343ineq1i 4223 . . . . . . . . . . . . . . 15 (𝑍 ∩ (𝑛[,)+∞)) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3533, 34eqtri 2762 . . . . . . . . . . . . . 14 ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
372fdmd 6746 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
3837ineq2d 4227 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
3938adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
403eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4140biimpi 216 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4241adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
4342uzinico2 45514 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (ℤ𝑛) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
4436, 39, 433eqtr4d 2784 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ𝑛))
4544reseq2d 5999 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ𝑛)))
4632, 45eqtr3d 2776 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ𝑛)))
4746rneqd 5951 . . . . . . . . 9 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ𝑛)))
4826, 28, 473eqtrd 2778 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = ran (𝐹 ↾ (ℤ𝑛)))
4948supeq1d 9483 . . . . . . 7 ((𝜑𝑛𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
5049mpteq2dva 5247 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5120, 50eqtrd 2774 . . . . 5 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5251rneqd 5951 . . . 4 (𝜑 → ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5314, 52eqtrd 2774 . . 3 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5453infeq1d 9514 . 2 (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
55 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
5655reseq2d 5999 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
5756rneqd 5951 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
5857supeq1d 9483 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
5958cbvmptv 5260 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6059rneqi 5950 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6160infeq1i 9515 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < )
6261a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
6313, 54, 623eqtrd 2778 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961  wss 3962  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  Rel wrel 5693  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  infcinf 9478  cr 11151  +∞cpnf 11289  *cxr 11291   < clt 11292  cz 12610  cuz 12875  [,)cico 13385  lim supclsp 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-ico 13389  df-fl 13828  df-limsup 15503
This theorem is referenced by:  limsupvaluzmpt  45672  limsupvaluz2  45693  limsupgtlem  45732
  Copyright terms: Public domain W3C validator