Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . 3
⊢ (𝑖 ∈ ℝ ↦
sup(((𝐹 “ (𝑖[,)+∞)) ∩
ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
2 | | limsupvaluz.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
3 | | limsupvaluz.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | 3 | fvexi 6672 |
. . . . . 6
⊢ 𝑍 ∈ V |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ V) |
6 | 2, 5 | fexd 6981 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
7 | 6 | elexd 3430 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
8 | | uzssre 12304 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
9 | 3, 8 | eqsstri 3926 |
. . . 4
⊢ 𝑍 ⊆
ℝ |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑍 ⊆ ℝ) |
11 | | limsupvaluz.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | 3 | uzsup 13280 |
. . . 4
⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) =
+∞) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → sup(𝑍, ℝ*, < ) =
+∞) |
14 | 1, 7, 10, 13 | limsupval2 14885 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍), ℝ*, <
)) |
15 | 10 | mptima2 42273 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍) = ran (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
16 | | oveq1 7157 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞)) |
17 | 16 | imaeq2d 5901 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞))) |
18 | 17 | ineq1d 4116 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) =
((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*)) |
19 | 18 | supeq1d 8943 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
20 | 19 | cbvmptv 5135 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ))) |
22 | | fimass 6540 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆
ℝ*) |
23 | 2, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆
ℝ*) |
24 | | df-ss 3875 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*
↔ ((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝑛[,)+∞))) |
25 | 24 | biimpi 219 |
. . . . . . . . . . 11
⊢ ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*
→ ((𝐹 “ (𝑛[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝑛[,)+∞))) |
26 | 23, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
(𝐹 “ (𝑛[,)+∞))) |
27 | 26 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
(𝐹 “ (𝑛[,)+∞))) |
28 | | df-ima 5537 |
. . . . . . . . . 10
⊢ (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)) |
29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))) |
30 | 2 | freld 42249 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Rel 𝐹) |
31 | | resindm 5872 |
. . . . . . . . . . . . 13
⊢ (Rel
𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
33 | 32 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞))) |
34 | | incom 4106 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞)) |
35 | 3 | ineq1i 4113 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∩ (𝑛[,)+∞)) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞)) |
36 | 34, 35 | eqtri 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝑛[,)+∞) ∩ 𝑍) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞)) |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ≥‘𝑀) ∩ (𝑛[,)+∞))) |
38 | 2 | fdmd 6508 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝑍) |
39 | 38 | ineq2d 4117 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍)) |
40 | 39 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍)) |
41 | 3 | eleq2i 2843 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
42 | 41 | biimpi 219 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
43 | 42 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
44 | 43 | uzinico2 42587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) =
((ℤ≥‘𝑀) ∩ (𝑛[,)+∞))) |
45 | 37, 40, 44 | 3eqtr4d 2803 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ≥‘𝑛)) |
46 | 45 | reseq2d 5823 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ≥‘𝑛))) |
47 | 33, 46 | eqtr3d 2795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ≥‘𝑛))) |
48 | 47 | rneqd 5779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ≥‘𝑛))) |
49 | 27, 29, 48 | 3eqtrd 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) =
ran (𝐹 ↾
(ℤ≥‘𝑛))) |
50 | 49 | supeq1d 8943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)) |
51 | 50 | mpteq2dva 5127 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
52 | 21, 51 | eqtrd 2793 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
53 | 52 | rneqd 5779 |
. . . 4
⊢ (𝜑 → ran (𝑖 ∈ 𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) = ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
54 | 15, 53 | eqtrd 2793 |
. . 3
⊢ (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍) = ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))) |
55 | 54 | infeq1d 8974 |
. 2
⊢ (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*),
ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < )) |
56 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑘)) |
57 | 56 | reseq2d 5823 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑘))) |
58 | 57 | rneqd 5779 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑘))) |
59 | 58 | supeq1d 8943 |
. . . . . 6
⊢ (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
60 | 59 | cbvmptv 5135 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
61 | 60 | rneqi 5778 |
. . . 4
⊢ ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
62 | 61 | infeq1i 8975 |
. . 3
⊢ inf(ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < ) |
63 | 62 | a1i 11 |
. 2
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < )) |
64 | 14, 55, 63 | 3eqtrd 2797 |
1
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ*, < )) |