Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   GIF version

Theorem limsupvaluz 45693
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m (𝜑𝑀 ∈ ℤ)
limsupvaluz.z 𝑍 = (ℤ𝑀)
limsupvaluz.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupvaluz (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
2 limsupvaluz.f . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
3 limsupvaluz.z . . . . . 6 𝑍 = (ℤ𝑀)
43fvexi 6840 . . . . 5 𝑍 ∈ V
54a1i 11 . . . 4 (𝜑𝑍 ∈ V)
62, 5fexd 7167 . . 3 (𝜑𝐹 ∈ V)
7 uzssre 12775 . . . . 5 (ℤ𝑀) ⊆ ℝ
83, 7eqsstri 3984 . . . 4 𝑍 ⊆ ℝ
98a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
10 limsupvaluz.m . . . 4 (𝜑𝑀 ∈ ℤ)
113uzsup 13785 . . . 4 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1210, 11syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
131, 6, 9, 12limsupval2 15405 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
149mptimass 6028 . . . 4 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
15 oveq1 7360 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞))
1615imaeq2d 6015 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞)))
1716ineq1d 4172 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*))
1817supeq1d 9355 . . . . . . . 8 (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
1918cbvmptv 5199 . . . . . . 7 (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019a1i 11 . . . . . 6 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )))
21 fimass 6676 . . . . . . . . . . . 12 (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
222, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
23 dfss2 3923 . . . . . . . . . . . 12 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2423biimpi 216 . . . . . . . . . . 11 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2522, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2625adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
27 df-ima 5636 . . . . . . . . . 10 (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))
2827a1i 11 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)))
292freld 6662 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
30 resindm 5985 . . . . . . . . . . . . 13 (Rel 𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3129, 30syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
33 incom 4162 . . . . . . . . . . . . . . 15 ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞))
343ineq1i 4169 . . . . . . . . . . . . . . 15 (𝑍 ∩ (𝑛[,)+∞)) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3533, 34eqtri 2752 . . . . . . . . . . . . . 14 ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
372fdmd 6666 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
3837ineq2d 4173 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
3938adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
403eleq2i 2820 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4140biimpi 216 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4241adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
4342uzinico2 45546 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (ℤ𝑛) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
4436, 39, 433eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ𝑛))
4544reseq2d 5934 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ𝑛)))
4632, 45eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ𝑛)))
4746rneqd 5884 . . . . . . . . 9 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ𝑛)))
4826, 28, 473eqtrd 2768 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = ran (𝐹 ↾ (ℤ𝑛)))
4948supeq1d 9355 . . . . . . 7 ((𝜑𝑛𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
5049mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5120, 50eqtrd 2764 . . . . 5 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5251rneqd 5884 . . . 4 (𝜑 → ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5314, 52eqtrd 2764 . . 3 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5453infeq1d 9387 . 2 (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
55 fveq2 6826 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
5655reseq2d 5934 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
5756rneqd 5884 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
5857supeq1d 9355 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
5958cbvmptv 5199 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6059rneqi 5883 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6160infeq1i 9388 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < )
6261a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
6313, 54, 623eqtrd 2768 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Rel wrel 5628  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  cz 12489  cuz 12753  [,)cico 13268  lim supclsp 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-ico 13272  df-fl 13714  df-limsup 15396
This theorem is referenced by:  limsupvaluzmpt  45702  limsupvaluz2  45723  limsupgtlem  45762
  Copyright terms: Public domain W3C validator