Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   GIF version

Theorem limsupvaluz 43939
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m (𝜑𝑀 ∈ ℤ)
limsupvaluz.z 𝑍 = (ℤ𝑀)
limsupvaluz.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupvaluz (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
2 limsupvaluz.f . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
3 limsupvaluz.z . . . . . 6 𝑍 = (ℤ𝑀)
43fvexi 6856 . . . . 5 𝑍 ∈ V
54a1i 11 . . . 4 (𝜑𝑍 ∈ V)
62, 5fexd 7177 . . 3 (𝜑𝐹 ∈ V)
7 uzssre 12785 . . . . 5 (ℤ𝑀) ⊆ ℝ
83, 7eqsstri 3978 . . . 4 𝑍 ⊆ ℝ
98a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
10 limsupvaluz.m . . . 4 (𝜑𝑀 ∈ ℤ)
113uzsup 13768 . . . 4 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1210, 11syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
131, 6, 9, 12limsupval2 15362 . 2 (𝜑 → (lim sup‘𝐹) = inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ))
149mptima2 43463 . . . 4 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )))
15 oveq1 7364 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖[,)+∞) = (𝑛[,)+∞))
1615imaeq2d 6013 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑛[,)+∞)))
1716ineq1d 4171 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*))
1817supeq1d 9382 . . . . . . . 8 (𝑖 = 𝑛 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
1918cbvmptv 5218 . . . . . . 7 (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ))
2019a1i 11 . . . . . 6 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )))
21 fimass 6689 . . . . . . . . . . . 12 (𝐹:𝑍⟶ℝ* → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
222, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑛[,)+∞)) ⊆ ℝ*)
23 df-ss 3927 . . . . . . . . . . . 12 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2423biimpi 215 . . . . . . . . . . 11 ((𝐹 “ (𝑛[,)+∞)) ⊆ ℝ* → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2522, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
2625adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝑛[,)+∞)))
27 df-ima 5646 . . . . . . . . . 10 (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞))
2827a1i 11 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹 “ (𝑛[,)+∞)) = ran (𝐹 ↾ (𝑛[,)+∞)))
292freld 6674 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
30 resindm 5986 . . . . . . . . . . . . 13 (Rel 𝐹 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3129, 30syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
3231adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑛[,)+∞)))
33 incom 4161 . . . . . . . . . . . . . . 15 ((𝑛[,)+∞) ∩ 𝑍) = (𝑍 ∩ (𝑛[,)+∞))
343ineq1i 4168 . . . . . . . . . . . . . . 15 (𝑍 ∩ (𝑛[,)+∞)) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3533, 34eqtri 2764 . . . . . . . . . . . . . 14 ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞))
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ 𝑍) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
372fdmd 6679 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
3837ineq2d 4172 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
3938adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = ((𝑛[,)+∞) ∩ 𝑍))
403eleq2i 2829 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4140biimpi 215 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4241adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
4342uzinico2 43790 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (ℤ𝑛) = ((ℤ𝑀) ∩ (𝑛[,)+∞)))
4436, 39, 433eqtr4d 2786 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑛[,)+∞) ∩ dom 𝐹) = (ℤ𝑛))
4544reseq2d 5937 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹 ↾ ((𝑛[,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (ℤ𝑛)))
4632, 45eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (𝑛[,)+∞)) = (𝐹 ↾ (ℤ𝑛)))
4746rneqd 5893 . . . . . . . . 9 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (𝑛[,)+∞)) = ran (𝐹 ↾ (ℤ𝑛)))
4826, 28, 473eqtrd 2780 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*) = ran (𝐹 ↾ (ℤ𝑛)))
4948supeq1d 9382 . . . . . . 7 ((𝜑𝑛𝑍) → sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
5049mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ sup(((𝐹 “ (𝑛[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5120, 50eqtrd 2776 . . . . 5 (𝜑 → (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5251rneqd 5893 . . . 4 (𝜑 → ran (𝑖𝑍 ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5314, 52eqtrd 2776 . . 3 (𝜑 → ((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍) = ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
5453infeq1d 9413 . 2 (𝜑 → inf(((𝑖 ∈ ℝ ↦ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) “ 𝑍), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
55 fveq2 6842 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
5655reseq2d 5937 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
5756rneqd 5893 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
5857supeq1d 9382 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
5958cbvmptv 5218 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6059rneqi 5892 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
6160infeq1i 9414 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < )
6261a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
6313, 54, 623eqtrd 2780 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cin 3909  wss 3910  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Rel wrel 5638  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  infcinf 9377  cr 11050  +∞cpnf 11186  *cxr 11188   < clt 11189  cz 12499  cuz 12763  [,)cico 13266  lim supclsp 15352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-ico 13270  df-fl 13697  df-limsup 15353
This theorem is referenced by:  limsupvaluzmpt  43948  limsupvaluz2  43969  limsupgtlem  44008
  Copyright terms: Public domain W3C validator