Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmf Structured version   Visualization version   GIF version

Theorem sssmf 46720
Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmf.s (𝜑𝑆 ∈ SAlg)
sssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
sssmf (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))

Proof of Theorem sssmf
Dummy variables 𝑎 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 sssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss2 4191 . . 3 (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹
4 sssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
5 eqid 2729 . . . 4 dom 𝐹 = dom 𝐹
62, 4, 5smfdmss 46715 . . 3 (𝜑 → dom 𝐹 𝑆)
73, 6sstrid 3949 . 2 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ 𝑆)
82, 4, 5smff 46714 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
93a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹)
10 fssres 6694 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
128freld 6662 . . . . . . 7 (𝜑 → Rel 𝐹)
13 resindm 5985 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1514eqcomd 2735 . . . . 5 (𝜑 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
16 dmres 5967 . . . . . 6 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1716a1i 11 . . . . 5 (𝜑 → dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹))
1815, 17feq12d 6644 . . . 4 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ))
1911, 18mpbird 257 . . 3 (𝜑 → (𝐹𝐵):dom (𝐹𝐵)⟶ℝ)
2017feq2d 6640 . . 3 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ))
2119, 20mpbid 232 . 2 (𝜑 → (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)
222adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
234adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
24 simpr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
2522, 23, 5, 24smfpreimalt 46713 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
264dmexd 7843 . . . . . 6 (𝜑 → dom 𝐹 ∈ V)
27 elrest 17349 . . . . . 6 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
282, 26, 27syl2anc 584 . . . . 5 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
2928adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
3025, 29mpbid 232 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
31 elinel1 4154 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥𝐵)
3231fvresd 6846 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332breq1d 5105 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹𝐵)‘𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
3433rabbiia 3400 . . . . . . . . . 10 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
3534a1i 11 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
36 rabss2 4031 . . . . . . . . . . . . 13 ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
373, 36ax-mp 5 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
38 id 22 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
39 inss1 4190 . . . . . . . . . . . . . 14 (𝑤 ∩ dom 𝐹) ⊆ 𝑤
4039a1i 11 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤)
4138, 40eqsstrd 3972 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
4237, 41sstrid 3949 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
43 ssrab2 4033 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)
4443a1i 11 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹))
4542, 44ssind 4194 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
46 nfrab1 3417 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
47 nfcv 2891 . . . . . . . . . . . . . 14 𝑥(𝑤 ∩ dom 𝐹)
4846, 47nfeq 2905 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)
49 elinel2 4155 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
5049adantl 481 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
51 elinel1 4154 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥𝑤)
523sseli 3933 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
5349, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
5451, 53elind 4153 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5638eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5756adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5855, 57eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
59 rabid 3418 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6059biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6160simprd 495 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝐹𝑥) < 𝑎)
6258, 61syl 17 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹𝑥) < 𝑎)
6350, 62jca 511 . . . . . . . . . . . . . . 15 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
64 rabid 3418 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
6563, 64sylibr 234 . . . . . . . . . . . . . 14 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
6665ex 412 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}))
6748, 66ralrimi 3227 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
68 nfcv 2891 . . . . . . . . . . . . 13 𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹))
69 nfrab1 3417 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
7068, 69dfss3f 3929 . . . . . . . . . . . 12 ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7167, 70sylibr 234 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7238, 38, 38, 714syl 19 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7345, 72eqssd 3955 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7435, 73eqtrd 2764 . . . . . . . 8 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7574adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
76753adant2 1131 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
77223ad2ant1 1133 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg)
78 simp1l 1198 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑)
7926, 9ssexd 5266 . . . . . . . 8 (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V)
8078, 79syl 17 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V)
81 simp2 1137 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤𝑆)
82 eqid 2729 . . . . . . 7 (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹))
8377, 80, 81, 82elrestd 45086 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
8476, 83eqeltrd 2828 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
85843exp 1119 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑤𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))))
8685rexlimdv 3128 . . 3 ((𝜑𝑎 ∈ ℝ) → (∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹))))
8730, 86mpd 15 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
881, 2, 7, 21, 87issmfd 46717 1 (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cin 3904  wss 3905   cuni 4861   class class class wbr 5095  dom cdm 5623  cres 5625  Rel wrel 5628  wf 6482  cfv 6486  (class class class)co 7353  cr 11027   < clt 11168  t crest 17342  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ioo 13270  df-ico 13272  df-rest 17344  df-smblfn 46678
This theorem is referenced by:  sssmfmpt  46732
  Copyright terms: Public domain W3C validator