| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. 2
⊢
Ⅎ𝑎𝜑 |
| 2 | | sssmf.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 3 | | inss2 4238 |
. . 3
⊢ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 |
| 4 | | sssmf.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 5 | | eqid 2737 |
. . . 4
⊢ dom 𝐹 = dom 𝐹 |
| 6 | 2, 4, 5 | smfdmss 46748 |
. . 3
⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 7 | 3, 6 | sstrid 3995 |
. 2
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ ∪ 𝑆) |
| 8 | 2, 4, 5 | smff 46747 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 9 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) |
| 10 | | fssres 6774 |
. . . . 5
⊢ ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 12 | 8 | freld 6742 |
. . . . . . 7
⊢ (𝜑 → Rel 𝐹) |
| 13 | | resindm 6048 |
. . . . . . 7
⊢ (Rel
𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
| 15 | 14 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 16 | | dmres 6030 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹)) |
| 18 | 15, 17 | feq12d 6724 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
| 19 | 11, 18 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ) |
| 20 | 17 | feq2d 6722 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
| 21 | 19, 20 | mpbid 232 |
. 2
⊢ (𝜑 → (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ) |
| 22 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 23 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 24 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
| 25 | 22, 23, 5, 24 | smfpreimalt 46746 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 26 | 4 | dmexd 7925 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 ∈ V) |
| 27 | | elrest 17472 |
. . . . . 6
⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 28 | 2, 26, 27 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 29 | 28 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
| 30 | 25, 29 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
| 31 | | elinel1 4201 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ 𝐵) |
| 32 | 31 | fvresd 6926 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) |
| 33 | 32 | breq1d 5153 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹 ↾ 𝐵)‘𝑥) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
| 34 | 33 | rabbiia 3440 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
| 35 | 34 | a1i 11 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 36 | | rabss2 4078 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 37 | 3, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
| 38 | | id 22 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
| 39 | | inss1 4237 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∩ dom 𝐹) ⊆ 𝑤 |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤) |
| 41 | 38, 40 | eqsstrd 4018 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
| 42 | 37, 41 | sstrid 3995 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
| 43 | | ssrab2 4080 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)) |
| 45 | 42, 44 | ssind 4241 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 46 | | nfrab1 3457 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
| 47 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑤 ∩ dom 𝐹) |
| 48 | 46, 47 | nfeq 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) |
| 49 | | elinel2 4202 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
| 51 | | elinel1 4201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ 𝑤) |
| 52 | 3 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹) |
| 53 | 49, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
| 54 | 51, 53 | elind 4200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
| 56 | 38 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 58 | 55, 57 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 59 | | rabid 3458 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
| 60 | 59 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
| 61 | 60 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝐹‘𝑥) < 𝑎) |
| 62 | 58, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹‘𝑥) < 𝑎) |
| 63 | 50, 62 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
| 64 | | rabid 3458 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
| 65 | 63, 64 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 66 | 65 | ex 412 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎})) |
| 67 | 48, 66 | ralrimi 3257 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 68 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
| 69 | | nfrab1 3457 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
| 70 | 68, 69 | dfss3f 3975 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 71 | 67, 70 | sylibr 234 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 72 | 38, 38, 38, 71 | 4syl 19 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 73 | 45, 72 | eqssd 4001 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 74 | 35, 73 | eqtrd 2777 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 75 | 74 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 76 | 75 | 3adant2 1132 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
| 77 | 22 | 3ad2ant1 1134 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg) |
| 78 | | simp1l 1198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑) |
| 79 | 26, 9 | ssexd 5324 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V) |
| 80 | 78, 79 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V) |
| 81 | | simp2 1138 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤 ∈ 𝑆) |
| 82 | | eqid 2737 |
. . . . . . 7
⊢ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
| 83 | 77, 80, 81, 82 | elrestd 45113 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 84 | 76, 83 | eqeltrd 2841 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 85 | 84 | 3exp 1120 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑤 ∈ 𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))))) |
| 86 | 85 | rexlimdv 3153 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹)))) |
| 87 | 30, 86 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
| 88 | 1, 2, 7, 21, 87 | issmfd 46750 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) |