Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmf Structured version   Visualization version   GIF version

Theorem sssmf 46860
Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmf.s (𝜑𝑆 ∈ SAlg)
sssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
sssmf (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))

Proof of Theorem sssmf
Dummy variables 𝑎 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 sssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss2 4187 . . 3 (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹
4 sssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
5 eqid 2733 . . . 4 dom 𝐹 = dom 𝐹
62, 4, 5smfdmss 46855 . . 3 (𝜑 → dom 𝐹 𝑆)
73, 6sstrid 3942 . 2 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ 𝑆)
82, 4, 5smff 46854 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
93a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹)
10 fssres 6694 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
128freld 6662 . . . . . . 7 (𝜑 → Rel 𝐹)
13 resindm 5983 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1514eqcomd 2739 . . . . 5 (𝜑 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
16 dmres 5965 . . . . . 6 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1716a1i 11 . . . . 5 (𝜑 → dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹))
1815, 17feq12d 6644 . . . 4 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ))
1911, 18mpbird 257 . . 3 (𝜑 → (𝐹𝐵):dom (𝐹𝐵)⟶ℝ)
2017feq2d 6640 . . 3 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ))
2119, 20mpbid 232 . 2 (𝜑 → (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)
222adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
234adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
24 simpr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
2522, 23, 5, 24smfpreimalt 46853 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
264dmexd 7839 . . . . . 6 (𝜑 → dom 𝐹 ∈ V)
27 elrest 17333 . . . . . 6 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
282, 26, 27syl2anc 584 . . . . 5 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
2928adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
3025, 29mpbid 232 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
31 elinel1 4150 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥𝐵)
3231fvresd 6848 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332breq1d 5103 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹𝐵)‘𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
3433rabbiia 3400 . . . . . . . . . 10 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
3534a1i 11 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
36 rabss2 4026 . . . . . . . . . . . . 13 ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
373, 36ax-mp 5 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
38 id 22 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
39 inss1 4186 . . . . . . . . . . . . . 14 (𝑤 ∩ dom 𝐹) ⊆ 𝑤
4039a1i 11 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤)
4138, 40eqsstrd 3965 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
4237, 41sstrid 3942 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
43 ssrab2 4029 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)
4443a1i 11 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹))
4542, 44ssind 4190 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
46 nfrab1 3416 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
47 nfcv 2895 . . . . . . . . . . . . . 14 𝑥(𝑤 ∩ dom 𝐹)
4846, 47nfeq 2909 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)
49 elinel2 4151 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
5049adantl 481 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
51 elinel1 4150 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥𝑤)
523sseli 3926 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
5349, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
5451, 53elind 4149 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5638eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5756adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5855, 57eleqtrd 2835 . . . . . . . . . . . . . . . . 17 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
59 rabid 3417 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6059biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6160simprd 495 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝐹𝑥) < 𝑎)
6258, 61syl 17 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹𝑥) < 𝑎)
6350, 62jca 511 . . . . . . . . . . . . . . 15 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
64 rabid 3417 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
6563, 64sylibr 234 . . . . . . . . . . . . . 14 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
6665ex 412 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}))
6748, 66ralrimi 3231 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
68 nfcv 2895 . . . . . . . . . . . . 13 𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹))
69 nfrab1 3416 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
7068, 69dfss3f 3922 . . . . . . . . . . . 12 ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7167, 70sylibr 234 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7238, 38, 38, 714syl 19 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7345, 72eqssd 3948 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7435, 73eqtrd 2768 . . . . . . . 8 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7574adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
76753adant2 1131 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
77223ad2ant1 1133 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg)
78 simp1l 1198 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑)
7926, 9ssexd 5264 . . . . . . . 8 (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V)
8078, 79syl 17 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V)
81 simp2 1137 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤𝑆)
82 eqid 2733 . . . . . . 7 (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹))
8377, 80, 81, 82elrestd 45229 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
8476, 83eqeltrd 2833 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
85843exp 1119 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑤𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))))
8685rexlimdv 3132 . . 3 ((𝜑𝑎 ∈ ℝ) → (∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹))))
8730, 86mpd 15 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
881, 2, 7, 21, 87issmfd 46857 1 (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898   cuni 4858   class class class wbr 5093  dom cdm 5619  cres 5621  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  cr 11012   < clt 11153  t crest 17326  SAlgcsalg 46430  SMblFncsmblfn 46817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioo 13251  df-ico 13253  df-rest 17328  df-smblfn 46818
This theorem is referenced by:  sssmfmpt  46872
  Copyright terms: Public domain W3C validator