Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmf Structured version   Visualization version   GIF version

Theorem sssmf 46743
Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmf.s (𝜑𝑆 ∈ SAlg)
sssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
sssmf (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))

Proof of Theorem sssmf
Dummy variables 𝑎 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 sssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss2 4204 . . 3 (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹
4 sssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
5 eqid 2730 . . . 4 dom 𝐹 = dom 𝐹
62, 4, 5smfdmss 46738 . . 3 (𝜑 → dom 𝐹 𝑆)
73, 6sstrid 3961 . 2 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ 𝑆)
82, 4, 5smff 46737 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
93a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹)
10 fssres 6729 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
128freld 6697 . . . . . . 7 (𝜑 → Rel 𝐹)
13 resindm 6004 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1514eqcomd 2736 . . . . 5 (𝜑 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
16 dmres 5986 . . . . . 6 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1716a1i 11 . . . . 5 (𝜑 → dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹))
1815, 17feq12d 6679 . . . 4 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ))
1911, 18mpbird 257 . . 3 (𝜑 → (𝐹𝐵):dom (𝐹𝐵)⟶ℝ)
2017feq2d 6675 . . 3 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ))
2119, 20mpbid 232 . 2 (𝜑 → (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)
222adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
234adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
24 simpr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
2522, 23, 5, 24smfpreimalt 46736 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
264dmexd 7882 . . . . . 6 (𝜑 → dom 𝐹 ∈ V)
27 elrest 17397 . . . . . 6 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
282, 26, 27syl2anc 584 . . . . 5 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
2928adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
3025, 29mpbid 232 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
31 elinel1 4167 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥𝐵)
3231fvresd 6881 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332breq1d 5120 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹𝐵)‘𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
3433rabbiia 3412 . . . . . . . . . 10 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
3534a1i 11 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
36 rabss2 4044 . . . . . . . . . . . . 13 ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
373, 36ax-mp 5 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
38 id 22 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
39 inss1 4203 . . . . . . . . . . . . . 14 (𝑤 ∩ dom 𝐹) ⊆ 𝑤
4039a1i 11 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤)
4138, 40eqsstrd 3984 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
4237, 41sstrid 3961 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
43 ssrab2 4046 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)
4443a1i 11 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹))
4542, 44ssind 4207 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
46 nfrab1 3429 . . . . . . . . . . . . . 14 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
47 nfcv 2892 . . . . . . . . . . . . . 14 𝑥(𝑤 ∩ dom 𝐹)
4846, 47nfeq 2906 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)
49 elinel2 4168 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
5049adantl 481 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
51 elinel1 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥𝑤)
523sseli 3945 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
5349, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
5451, 53elind 4166 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5638eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5756adantr 480 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5855, 57eleqtrd 2831 . . . . . . . . . . . . . . . . 17 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
59 rabid 3430 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6059biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6160simprd 495 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝐹𝑥) < 𝑎)
6258, 61syl 17 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹𝑥) < 𝑎)
6350, 62jca 511 . . . . . . . . . . . . . . 15 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
64 rabid 3430 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
6563, 64sylibr 234 . . . . . . . . . . . . . 14 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
6665ex 412 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}))
6748, 66ralrimi 3236 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
68 nfcv 2892 . . . . . . . . . . . . 13 𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹))
69 nfrab1 3429 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
7068, 69dfss3f 3941 . . . . . . . . . . . 12 ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7167, 70sylibr 234 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7238, 38, 38, 714syl 19 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7345, 72eqssd 3967 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7435, 73eqtrd 2765 . . . . . . . 8 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7574adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
76753adant2 1131 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
77223ad2ant1 1133 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg)
78 simp1l 1198 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑)
7926, 9ssexd 5282 . . . . . . . 8 (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V)
8078, 79syl 17 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V)
81 simp2 1137 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤𝑆)
82 eqid 2730 . . . . . . 7 (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹))
8377, 80, 81, 82elrestd 45109 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
8476, 83eqeltrd 2829 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
85843exp 1119 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑤𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))))
8685rexlimdv 3133 . . 3 ((𝜑𝑎 ∈ ℝ) → (∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹))))
8730, 86mpd 15 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
881, 2, 7, 21, 87issmfd 46740 1 (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  cres 5643  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  cr 11074   < clt 11215  t crest 17390  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-ico 13319  df-rest 17392  df-smblfn 46701
This theorem is referenced by:  sssmfmpt  46755
  Copyright terms: Public domain W3C validator