Step | Hyp | Ref
| Expression |
1 | | nfv 1922 |
. 2
⊢
Ⅎ𝑎𝜑 |
2 | | sssmf.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
3 | | inss2 4144 |
. . 3
⊢ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 |
4 | | sssmf.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
5 | | eqid 2737 |
. . . 4
⊢ dom 𝐹 = dom 𝐹 |
6 | 2, 4, 5 | smfdmss 43941 |
. . 3
⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
7 | 3, 6 | sstrid 3912 |
. 2
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ ∪ 𝑆) |
8 | 2, 4, 5 | smff 43940 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
9 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) |
10 | | fssres 6585 |
. . . . 5
⊢ ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
11 | 8, 9, 10 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ) |
12 | 8 | freld 6551 |
. . . . . . 7
⊢ (𝜑 → Rel 𝐹) |
13 | | resindm 5900 |
. . . . . . 7
⊢ (Rel
𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) |
15 | 14 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
16 | | dmres 5873 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹)) |
18 | 15, 17 | feq12d 6533 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
19 | 11, 18 | mpbird 260 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ) |
20 | 17 | feq2d 6531 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐵):dom (𝐹 ↾ 𝐵)⟶ℝ ↔ (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)) |
21 | 19, 20 | mpbid 235 |
. 2
⊢ (𝜑 → (𝐹 ↾ 𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ) |
22 | 2 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
23 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
24 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
25 | 22, 23, 5, 24 | smfpreimalt 43939 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
26 | 4 | dmexd 7683 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 ∈ V) |
27 | | elrest 16932 |
. . . . . 6
⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
28 | 2, 26, 27 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
29 | 28 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))) |
30 | 25, 29 | mpbid 235 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
31 | | elinel1 4109 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ 𝐵) |
32 | 31 | fvresd 6737 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) |
33 | 32 | breq1d 5063 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹 ↾ 𝐵)‘𝑥) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
34 | 33 | rabbiia 3382 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
35 | 34 | a1i 11 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
36 | | rabss2 3991 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
37 | 3, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
38 | | id 22 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) |
39 | | inss1 4143 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∩ dom 𝐹) ⊆ 𝑤 |
40 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤) |
41 | 38, 40 | eqsstrd 3939 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
42 | 37, 41 | sstrid 3912 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ 𝑤) |
43 | | ssrab2 3993 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹) |
44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)) |
45 | 42, 44 | ssind 4147 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
46 | | nfrab1 3296 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} |
47 | | nfcv 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑤 ∩ dom 𝐹) |
48 | 46, 47 | nfeq 2917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) |
49 | | elinel2 4110 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
50 | 49 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹)) |
51 | | elinel1 4109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ 𝑤) |
52 | 3 | sseli 3896 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹) |
53 | 49, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹) |
54 | 51, 53 | elind 4108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
55 | 54 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹)) |
56 | 38 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
57 | 56 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
58 | 55, 57 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
59 | | rabid 3290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
60 | 59 | biimpi 219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) < 𝑎)) |
61 | 60 | simprd 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} → (𝐹‘𝑥) < 𝑎) |
62 | 58, 61 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹‘𝑥) < 𝑎) |
63 | 50, 62 | jca 515 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
64 | | rabid 3290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹‘𝑥) < 𝑎)) |
65 | 63, 64 | sylibr 237 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
66 | 65 | ex 416 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎})) |
67 | 48, 66 | ralrimi 3137 |
. . . . . . . . . . . . . 14
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
68 | | nfcv 2904 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
69 | | nfrab1 3296 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} |
70 | 68, 69 | dfss3f 3891 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
71 | 67, 70 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
72 | 71 | sseld 3900 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎})) |
73 | 48, 72 | ralrimi 3137 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
74 | 73, 70 | sylibr 237 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
75 | 45, 74 | eqssd 3918 |
. . . . . . . . 9
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
76 | 35, 75 | eqtrd 2777 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
77 | 76 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
78 | 77 | 3adant2 1133 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹))) |
79 | 22 | 3ad2ant1 1135 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg) |
80 | | simp1l 1199 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑) |
81 | 26, 9 | ssexd 5217 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V) |
82 | 80, 81 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V) |
83 | | simp2 1139 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤 ∈ 𝑆) |
84 | | eqid 2737 |
. . . . . . 7
⊢ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹)) |
85 | 79, 82, 83, 84 | elrestd 42331 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
86 | 78, 85 | eqeltrd 2838 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑤 ∈ 𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
87 | 86 | 3exp 1121 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑤 ∈ 𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))))) |
88 | 87 | rexlimdv 3202 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (∃𝑤 ∈ 𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹)))) |
89 | 30, 88 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹 ↾ 𝐵)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (𝐵 ∩ dom 𝐹))) |
90 | 1, 2, 7, 21, 89 | issmfd 43943 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) |