Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmf Structured version   Visualization version   GIF version

Theorem sssmf 43005
Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmf.s (𝜑𝑆 ∈ SAlg)
sssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
sssmf (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))

Proof of Theorem sssmf
Dummy variables 𝑎 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . 2 𝑎𝜑
2 sssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss2 4204 . . 3 (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹
4 sssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
5 eqid 2819 . . . 4 dom 𝐹 = dom 𝐹
62, 4, 5smfdmss 43000 . . 3 (𝜑 → dom 𝐹 𝑆)
73, 6sstrid 3976 . 2 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ 𝑆)
82, 4, 5smff 42999 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
93a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹)
10 fssres 6537 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (𝐵 ∩ dom 𝐹) ⊆ dom 𝐹) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
118, 9, 10syl2anc 586 . . . 4 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ)
128freld 41482 . . . . . . 7 (𝜑 → Rel 𝐹)
13 resindm 5893 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
1514eqcomd 2825 . . . . 5 (𝜑 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
16 dmres 5868 . . . . . 6 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1716a1i 11 . . . . 5 (𝜑 → dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹))
1815, 17feq12d 6495 . . . 4 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹 ↾ (𝐵 ∩ dom 𝐹)):(𝐵 ∩ dom 𝐹)⟶ℝ))
1911, 18mpbird 259 . . 3 (𝜑 → (𝐹𝐵):dom (𝐹𝐵)⟶ℝ)
2017feq2d 6493 . . 3 (𝜑 → ((𝐹𝐵):dom (𝐹𝐵)⟶ℝ ↔ (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ))
2119, 20mpbid 234 . 2 (𝜑 → (𝐹𝐵):(𝐵 ∩ dom 𝐹)⟶ℝ)
222adantr 483 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
234adantr 483 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
24 simpr 487 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
2522, 23, 5, 24smfpreimalt 42998 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
264dmexd 7607 . . . . . 6 (𝜑 → dom 𝐹 ∈ V)
27 elrest 16693 . . . . . 6 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
282, 26, 27syl2anc 586 . . . . 5 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
2928adantr 483 . . . 4 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)))
3025, 29mpbid 234 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
31 elinel1 4170 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥𝐵)
3231fvresd 6683 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332breq1d 5067 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → (((𝐹𝐵)‘𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
3433rabbiia 3471 . . . . . . . . . 10 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
3534a1i 11 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
36 rabss2 4052 . . . . . . . . . . . . 13 ((𝐵 ∩ dom 𝐹) ⊆ dom 𝐹 → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
373, 36ax-mp 5 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
38 id 22 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹))
39 inss1 4203 . . . . . . . . . . . . . 14 (𝑤 ∩ dom 𝐹) ⊆ 𝑤
4039a1i 11 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) ⊆ 𝑤)
4138, 40eqsstrd 4003 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
4237, 41sstrid 3976 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ 𝑤)
43 ssrab2 4054 . . . . . . . . . . . 12 {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹)
4443a1i 11 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝐵 ∩ dom 𝐹))
4542, 44ssind 4207 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ⊆ (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
46 nfrab1 3383 . . . . . . . . . . . . 13 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎}
47 nfcv 2975 . . . . . . . . . . . . 13 𝑥(𝑤 ∩ dom 𝐹)
4846, 47nfeq 2989 . . . . . . . . . . . 12 𝑥{𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)
49 elinel2 4171 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
5049adantl 484 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝐵 ∩ dom 𝐹))
51 elinel1 4170 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥𝑤)
523sseli 3961 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝐵 ∩ dom 𝐹) → 𝑥 ∈ dom 𝐹)
5349, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ dom 𝐹)
5451, 53elind 4169 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5554adantl 484 . . . . . . . . . . . . . . . . . . . 20 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ (𝑤 ∩ dom 𝐹))
5638eqcomd 2825 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5756adantr 483 . . . . . . . . . . . . . . . . . . . 20 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑤 ∩ dom 𝐹) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
5855, 57eleqtrd 2913 . . . . . . . . . . . . . . . . . . 19 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
59 rabid 3377 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6059biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) < 𝑎))
6160simprd 498 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} → (𝐹𝑥) < 𝑎)
6258, 61syl 17 . . . . . . . . . . . . . . . . . 18 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝐹𝑥) < 𝑎)
6350, 62jca 514 . . . . . . . . . . . . . . . . 17 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
64 rabid 3377 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ (𝐹𝑥) < 𝑎))
6563, 64sylibr 236 . . . . . . . . . . . . . . . 16 (({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) ∧ 𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
6665ex 415 . . . . . . . . . . . . . . 15 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}))
6748, 66ralrimi 3214 . . . . . . . . . . . . . 14 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
68 nfcv 2975 . . . . . . . . . . . . . . 15 𝑥(𝑤 ∩ (𝐵 ∩ dom 𝐹))
69 nfrab1 3383 . . . . . . . . . . . . . . 15 𝑥{𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
7068, 69dfss3f 3957 . . . . . . . . . . . . . 14 ((𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ↔ ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7167, 70sylibr 236 . . . . . . . . . . . . 13 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7271sseld 3964 . . . . . . . . . . . 12 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹)) → 𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎}))
7348, 72ralrimi 3214 . . . . . . . . . . 11 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → ∀𝑥 ∈ (𝑤 ∩ (𝐵 ∩ dom 𝐹))𝑥 ∈ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7473, 70sylibr 236 . . . . . . . . . 10 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ⊆ {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
7545, 74eqssd 3982 . . . . . . . . 9 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7635, 75eqtrd 2854 . . . . . . . 8 ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
7776adantl 484 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
78773adant2 1126 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} = (𝑤 ∩ (𝐵 ∩ dom 𝐹)))
79223ad2ant1 1128 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑆 ∈ SAlg)
80 simp1l 1192 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝜑)
8126, 9ssexd 5219 . . . . . . . 8 (𝜑 → (𝐵 ∩ dom 𝐹) ∈ V)
8280, 81syl 17 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝐵 ∩ dom 𝐹) ∈ V)
83 simp2 1132 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → 𝑤𝑆)
84 eqid 2819 . . . . . . 7 (𝑤 ∩ (𝐵 ∩ dom 𝐹)) = (𝑤 ∩ (𝐵 ∩ dom 𝐹))
8579, 82, 83, 84elrestd 41364 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → (𝑤 ∩ (𝐵 ∩ dom 𝐹)) ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
8678, 85eqeltrd 2911 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑤𝑆 ∧ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹)) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
87863exp 1114 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑤𝑆 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))))
8887rexlimdv 3281 . . 3 ((𝜑𝑎 ∈ ℝ) → (∃𝑤𝑆 {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝑤 ∩ dom 𝐹) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹))))
8930, 88mpd 15 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐵 ∩ dom 𝐹) ∣ ((𝐹𝐵)‘𝑥) < 𝑎} ∈ (𝑆t (𝐵 ∩ dom 𝐹)))
901, 2, 7, 21, 89issmfd 43002 1 (𝜑 → (𝐹𝐵) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  cin 3933  wss 3934   cuni 4830   class class class wbr 5057  dom cdm 5548  cres 5550  Rel wrel 5553  wf 6344  cfv 6348  (class class class)co 7148  cr 10528   < clt 10667  t crest 16686  SAlgcsalg 42583  SMblFncsmblfn 42967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ioo 12734  df-ico 12736  df-rest 16688  df-smblfn 42968
This theorem is referenced by:  sssmfmpt  43017
  Copyright terms: Public domain W3C validator