Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssmf Structured version   Visualization version   GIF version

Theorem sssmf 45440
Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
sssmf.s (πœ‘ β†’ 𝑆 ∈ SAlg)
sssmf.f (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
Assertion
Ref Expression
sssmf (πœ‘ β†’ (𝐹 β†Ύ 𝐡) ∈ (SMblFnβ€˜π‘†))

Proof of Theorem sssmf
Dummy variables π‘Ž 𝑀 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 β„²π‘Žπœ‘
2 sssmf.s . 2 (πœ‘ β†’ 𝑆 ∈ SAlg)
3 inss2 4228 . . 3 (𝐡 ∩ dom 𝐹) βŠ† dom 𝐹
4 sssmf.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
5 eqid 2732 . . . 4 dom 𝐹 = dom 𝐹
62, 4, 5smfdmss 45435 . . 3 (πœ‘ β†’ dom 𝐹 βŠ† βˆͺ 𝑆)
73, 6sstrid 3992 . 2 (πœ‘ β†’ (𝐡 ∩ dom 𝐹) βŠ† βˆͺ 𝑆)
82, 4, 5smff 45434 . . . . 5 (πœ‘ β†’ 𝐹:dom πΉβŸΆβ„)
93a1i 11 . . . . 5 (πœ‘ β†’ (𝐡 ∩ dom 𝐹) βŠ† dom 𝐹)
10 fssres 6754 . . . . 5 ((𝐹:dom πΉβŸΆβ„ ∧ (𝐡 ∩ dom 𝐹) βŠ† dom 𝐹) β†’ (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)):(𝐡 ∩ dom 𝐹)βŸΆβ„)
118, 9, 10syl2anc 584 . . . 4 (πœ‘ β†’ (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)):(𝐡 ∩ dom 𝐹)βŸΆβ„)
128freld 6720 . . . . . . 7 (πœ‘ β†’ Rel 𝐹)
13 resindm 6028 . . . . . . 7 (Rel 𝐹 β†’ (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)) = (𝐹 β†Ύ 𝐡))
1412, 13syl 17 . . . . . 6 (πœ‘ β†’ (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)) = (𝐹 β†Ύ 𝐡))
1514eqcomd 2738 . . . . 5 (πœ‘ β†’ (𝐹 β†Ύ 𝐡) = (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)))
16 dmres 6001 . . . . . 6 dom (𝐹 β†Ύ 𝐡) = (𝐡 ∩ dom 𝐹)
1716a1i 11 . . . . 5 (πœ‘ β†’ dom (𝐹 β†Ύ 𝐡) = (𝐡 ∩ dom 𝐹))
1815, 17feq12d 6702 . . . 4 (πœ‘ β†’ ((𝐹 β†Ύ 𝐡):dom (𝐹 β†Ύ 𝐡)βŸΆβ„ ↔ (𝐹 β†Ύ (𝐡 ∩ dom 𝐹)):(𝐡 ∩ dom 𝐹)βŸΆβ„))
1911, 18mpbird 256 . . 3 (πœ‘ β†’ (𝐹 β†Ύ 𝐡):dom (𝐹 β†Ύ 𝐡)βŸΆβ„)
2017feq2d 6700 . . 3 (πœ‘ β†’ ((𝐹 β†Ύ 𝐡):dom (𝐹 β†Ύ 𝐡)βŸΆβ„ ↔ (𝐹 β†Ύ 𝐡):(𝐡 ∩ dom 𝐹)βŸΆβ„))
2119, 20mpbid 231 . 2 (πœ‘ β†’ (𝐹 β†Ύ 𝐡):(𝐡 ∩ dom 𝐹)βŸΆβ„)
222adantr 481 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ 𝑆 ∈ SAlg)
234adantr 481 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
24 simpr 485 . . . . 5 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ π‘Ž ∈ ℝ)
2522, 23, 5, 24smfpreimalt 45433 . . . 4 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt dom 𝐹))
264dmexd 7892 . . . . . 6 (πœ‘ β†’ dom 𝐹 ∈ V)
27 elrest 17369 . . . . . 6 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V) β†’ ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt dom 𝐹) ↔ βˆƒπ‘€ ∈ 𝑆 {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)))
282, 26, 27syl2anc 584 . . . . 5 (πœ‘ β†’ ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt dom 𝐹) ↔ βˆƒπ‘€ ∈ 𝑆 {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)))
2928adantr 481 . . . 4 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt dom 𝐹) ↔ βˆƒπ‘€ ∈ 𝑆 {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)))
3025, 29mpbid 231 . . 3 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ βˆƒπ‘€ ∈ 𝑆 {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹))
31 elinel1 4194 . . . . . . . . . . . . 13 (π‘₯ ∈ (𝐡 ∩ dom 𝐹) β†’ π‘₯ ∈ 𝐡)
3231fvresd 6908 . . . . . . . . . . . 12 (π‘₯ ∈ (𝐡 ∩ dom 𝐹) β†’ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) = (πΉβ€˜π‘₯))
3332breq1d 5157 . . . . . . . . . . 11 (π‘₯ ∈ (𝐡 ∩ dom 𝐹) β†’ (((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž ↔ (πΉβ€˜π‘₯) < π‘Ž))
3433rabbiia 3436 . . . . . . . . . 10 {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} = {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž}
3534a1i 11 . . . . . . . . 9 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} = {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
36 rabss2 4074 . . . . . . . . . . . . 13 ((𝐡 ∩ dom 𝐹) βŠ† dom 𝐹 β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž})
373, 36ax-mp 5 . . . . . . . . . . . 12 {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž}
38 id 22 . . . . . . . . . . . . 13 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹))
39 inss1 4227 . . . . . . . . . . . . . 14 (𝑀 ∩ dom 𝐹) βŠ† 𝑀
4039a1i 11 . . . . . . . . . . . . 13 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (𝑀 ∩ dom 𝐹) βŠ† 𝑀)
4138, 40eqsstrd 4019 . . . . . . . . . . . 12 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† 𝑀)
4237, 41sstrid 3992 . . . . . . . . . . 11 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† 𝑀)
43 ssrab2 4076 . . . . . . . . . . . 12 {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† (𝐡 ∩ dom 𝐹)
4443a1i 11 . . . . . . . . . . 11 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† (𝐡 ∩ dom 𝐹))
4542, 44ssind 4231 . . . . . . . . . 10 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} βŠ† (𝑀 ∩ (𝐡 ∩ dom 𝐹)))
46 nfrab1 3451 . . . . . . . . . . . . 13 β„²π‘₯{π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž}
47 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘₯(𝑀 ∩ dom 𝐹)
4846, 47nfeq 2916 . . . . . . . . . . . 12 β„²π‘₯{π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)
49 elinel2 4195 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ (𝐡 ∩ dom 𝐹))
5049adantl 482 . . . . . . . . . . . . . . . . . 18 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ π‘₯ ∈ (𝐡 ∩ dom 𝐹))
51 elinel1 4194 . . . . . . . . . . . . . . . . . . . . . 22 (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ 𝑀)
523sseli 3977 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘₯ ∈ (𝐡 ∩ dom 𝐹) β†’ π‘₯ ∈ dom 𝐹)
5349, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ dom 𝐹)
5451, 53elind 4193 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ (𝑀 ∩ dom 𝐹))
5554adantl 482 . . . . . . . . . . . . . . . . . . . 20 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ π‘₯ ∈ (𝑀 ∩ dom 𝐹))
5638eqcomd 2738 . . . . . . . . . . . . . . . . . . . . 21 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (𝑀 ∩ dom 𝐹) = {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž})
5756adantr 481 . . . . . . . . . . . . . . . . . . . 20 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ (𝑀 ∩ dom 𝐹) = {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž})
5855, 57eleqtrd 2835 . . . . . . . . . . . . . . . . . . 19 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ π‘₯ ∈ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž})
59 rabid 3452 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} ↔ (π‘₯ ∈ dom 𝐹 ∧ (πΉβ€˜π‘₯) < π‘Ž))
6059biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} β†’ (π‘₯ ∈ dom 𝐹 ∧ (πΉβ€˜π‘₯) < π‘Ž))
6160simprd 496 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} β†’ (πΉβ€˜π‘₯) < π‘Ž)
6258, 61syl 17 . . . . . . . . . . . . . . . . . 18 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ (πΉβ€˜π‘₯) < π‘Ž)
6350, 62jca 512 . . . . . . . . . . . . . . . . 17 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ (π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∧ (πΉβ€˜π‘₯) < π‘Ž))
64 rabid 3452 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} ↔ (π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∧ (πΉβ€˜π‘₯) < π‘Ž))
6563, 64sylibr 233 . . . . . . . . . . . . . . . 16 (({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) ∧ π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))) β†’ π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
6665ex 413 . . . . . . . . . . . . . . 15 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž}))
6748, 66ralrimi 3254 . . . . . . . . . . . . . 14 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ βˆ€π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
68 nfcv 2903 . . . . . . . . . . . . . . 15 β„²π‘₯(𝑀 ∩ (𝐡 ∩ dom 𝐹))
69 nfrab1 3451 . . . . . . . . . . . . . . 15 β„²π‘₯{π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž}
7068, 69dfss3f 3972 . . . . . . . . . . . . . 14 ((𝑀 ∩ (𝐡 ∩ dom 𝐹)) βŠ† {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} ↔ βˆ€π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
7167, 70sylibr 233 . . . . . . . . . . . . 13 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) βŠ† {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
7271sseld 3980 . . . . . . . . . . . 12 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) β†’ π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž}))
7348, 72ralrimi 3254 . . . . . . . . . . 11 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ βˆ€π‘₯ ∈ (𝑀 ∩ (𝐡 ∩ dom 𝐹))π‘₯ ∈ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
7473, 70sylibr 233 . . . . . . . . . 10 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) βŠ† {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž})
7545, 74eqssd 3998 . . . . . . . . 9 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ (𝐡 ∩ dom 𝐹)))
7635, 75eqtrd 2772 . . . . . . . 8 ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} = (𝑀 ∩ (𝐡 ∩ dom 𝐹)))
7776adantl 482 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} = (𝑀 ∩ (𝐡 ∩ dom 𝐹)))
78773adant2 1131 . . . . . 6 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} = (𝑀 ∩ (𝐡 ∩ dom 𝐹)))
79223ad2ant1 1133 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ 𝑆 ∈ SAlg)
80 simp1l 1197 . . . . . . . 8 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ πœ‘)
8126, 9ssexd 5323 . . . . . . . 8 (πœ‘ β†’ (𝐡 ∩ dom 𝐹) ∈ V)
8280, 81syl 17 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ (𝐡 ∩ dom 𝐹) ∈ V)
83 simp2 1137 . . . . . . 7 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ 𝑀 ∈ 𝑆)
84 eqid 2732 . . . . . . 7 (𝑀 ∩ (𝐡 ∩ dom 𝐹)) = (𝑀 ∩ (𝐡 ∩ dom 𝐹))
8579, 82, 83, 84elrestd 43782 . . . . . 6 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ (𝑀 ∩ (𝐡 ∩ dom 𝐹)) ∈ (𝑆 β†Ύt (𝐡 ∩ dom 𝐹)))
8678, 85eqeltrd 2833 . . . . 5 (((πœ‘ ∧ π‘Ž ∈ ℝ) ∧ 𝑀 ∈ 𝑆 ∧ {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹)) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt (𝐡 ∩ dom 𝐹)))
87863exp 1119 . . . 4 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ (𝑀 ∈ 𝑆 β†’ ({π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt (𝐡 ∩ dom 𝐹)))))
8887rexlimdv 3153 . . 3 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ (βˆƒπ‘€ ∈ 𝑆 {π‘₯ ∈ dom 𝐹 ∣ (πΉβ€˜π‘₯) < π‘Ž} = (𝑀 ∩ dom 𝐹) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt (𝐡 ∩ dom 𝐹))))
8930, 88mpd 15 . 2 ((πœ‘ ∧ π‘Ž ∈ ℝ) β†’ {π‘₯ ∈ (𝐡 ∩ dom 𝐹) ∣ ((𝐹 β†Ύ 𝐡)β€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt (𝐡 ∩ dom 𝐹)))
901, 2, 7, 21, 89issmfd 45437 1 (πœ‘ β†’ (𝐹 β†Ύ 𝐡) ∈ (SMblFnβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆͺ cuni 4907   class class class wbr 5147  dom cdm 5675   β†Ύ cres 5677  Rel wrel 5680  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„cr 11105   < clt 11244   β†Ύt crest 17362  SAlgcsalg 45010  SMblFncsmblfn 45397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-ioo 13324  df-ico 13326  df-rest 17364  df-smblfn 45398
This theorem is referenced by:  sssmfmpt  45452
  Copyright terms: Public domain W3C validator