Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselvlem Structured version   Visualization version   GIF version

Theorem evlselvlem 42627
Description: Lemma for evlselv 42628. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselvlem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlselvlem.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
evlselvlem.c 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
evlselvlem.h 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
evlselvlem.i (𝜑𝐼𝑉)
evlselvlem.j (𝜑𝐽𝐼)
Assertion
Ref Expression
evlselvlem (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Distinct variable groups:   𝑓,𝑐,𝐼   𝑓,𝐽   𝐼,𝑐,𝑒,   𝐽,𝑐,𝑒,𝑔   𝐶,𝑐,𝑒   𝐷,𝑐,𝑒   𝐸,𝑐,𝑒   𝜑,𝑐,𝑒
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐶(𝑓,𝑔,)   𝐷(𝑓,𝑔,)   𝐸(𝑓,𝑔,)   𝐻(𝑒,𝑓,𝑔,,𝑐)   𝐼(𝑔)   𝐽()   𝑉(𝑒,𝑓,𝑔,,𝑐)

Proof of Theorem evlselvlem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evlselvlem.h . 2 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
2 evlselvlem.c . . . . . . 7 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21855 . . . . . 6 (𝑐𝐶𝑐:(𝐼𝐽)⟶ℕ0)
43ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐:(𝐼𝐽)⟶ℕ0)
5 evlselvlem.e . . . . . . 7 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
65psrbagf 21855 . . . . . 6 (𝑒𝐸𝑒:𝐽⟶ℕ0)
76ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒:𝐽⟶ℕ0)
8 disjdifr 4420 . . . . . 6 ((𝐼𝐽) ∩ 𝐽) = ∅
98a1i 11 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∩ 𝐽) = ∅)
104, 7, 9fun2d 6687 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
11 evlselvlem.j . . . . . . 7 (𝜑𝐽𝐼)
12 undifr 4430 . . . . . . 7 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1311, 12sylib 218 . . . . . 6 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1514feq2d 6635 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐𝑒):𝐼⟶ℕ0))
1610, 15mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):𝐼⟶ℕ0)
17 unexg 7676 . . . . . 6 ((𝑐𝐶𝑒𝐸) → (𝑐𝑒) ∈ V)
1817adantl 481 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ V)
19 0zd 12480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 0 ∈ ℤ)
2010ffund 6655 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → Fun (𝑐𝑒))
212psrbagfsupp 21856 . . . . . . 7 (𝑐𝐶𝑐 finSupp 0)
2221ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 finSupp 0)
235psrbagfsupp 21856 . . . . . . 7 (𝑒𝐸𝑒 finSupp 0)
2423ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 finSupp 0)
2522, 24fsuppun 9271 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) supp 0) ∈ Fin)
2618, 19, 20, 25isfsuppd 9250 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) finSupp 0)
27 fcdmnn0fsuppg 12441 . . . . 5 (((𝑐𝑒) ∈ V ∧ (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2818, 10, 27syl2anc 584 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2926, 28mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) “ ℕ) ∈ Fin)
30 evlselvlem.i . . . . 5 (𝜑𝐼𝑉)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝐼𝑉)
32 evlselvlem.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3332psrbag 21854 . . . 4 (𝐼𝑉 → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3431, 33syl 17 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3516, 29, 34mpbir2and 713 . 2 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ 𝐷)
3630adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐼𝑉)
37 difssd 4084 . . 3 ((𝜑𝑑𝐷) → (𝐼𝐽) ⊆ 𝐼)
38 simpr 484 . . 3 ((𝜑𝑑𝐷) → 𝑑𝐷)
3932, 2, 36, 37, 38psrbagres 42587 . 2 ((𝜑𝑑𝐷) → (𝑑 ↾ (𝐼𝐽)) ∈ 𝐶)
4011adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐽𝐼)
4132, 5, 36, 40, 38psrbagres 42587 . 2 ((𝜑𝑑𝐷) → (𝑑𝐽) ∈ 𝐸)
4232psrbagf 21855 . . . . . . . 8 (𝑑𝐷𝑑:𝐼⟶ℕ0)
4342adantl 481 . . . . . . 7 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
4443freld 6657 . . . . . 6 ((𝜑𝑑𝐷) → Rel 𝑑)
4543fdmd 6661 . . . . . . 7 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
4640, 12sylib 218 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
4745, 46eqtr4d 2769 . . . . . 6 ((𝜑𝑑𝐷) → dom 𝑑 = ((𝐼𝐽) ∪ 𝐽))
488a1i 11 . . . . . 6 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
49 reldisjun 5980 . . . . . 6 ((Rel 𝑑 ∧ dom 𝑑 = ((𝐼𝐽) ∪ 𝐽) ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5044, 47, 48, 49syl3anc 1373 . . . . 5 ((𝜑𝑑𝐷) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5150adantrl 716 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
52 uneq12 4110 . . . . 5 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑐𝑒) = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5352eqeq2d 2742 . . . 4 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑑 = (𝑐𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽))))
5451, 53syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → 𝑑 = (𝑐𝑒)))
554ffnd 6652 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 Fn (𝐼𝐽))
567ffnd 6652 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 Fn 𝐽)
57 fnunres1 6593 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5855, 56, 9, 57syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5958eqcomd 2737 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)))
60 fnunres2 6594 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6155, 56, 9, 60syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6261eqcomd 2737 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 = ((𝑐𝑒) ↾ 𝐽))
6359, 62jca 511 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6463adantrr 717 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
65 reseq1 5921 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑 ↾ (𝐼𝐽)) = ((𝑐𝑒) ↾ (𝐼𝐽)))
6665eqeq2d 2742 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ↔ 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽))))
67 reseq1 5921 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑𝐽) = ((𝑐𝑒) ↾ 𝐽))
6867eqeq2d 2742 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑒 = (𝑑𝐽) ↔ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6966, 68anbi12d 632 . . . 4 (𝑑 = (𝑐𝑒) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽))))
7064, 69syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽))))
7154, 70impbid 212 . 2 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ 𝑑 = (𝑐𝑒)))
721, 35, 39, 41, 71f1o2d2 42274 1 (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280   class class class wbr 5089   × cxp 5612  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  Rel wrel 5619   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  cn 12125  0cn0 12381  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469
This theorem is referenced by:  evlselv  42628
  Copyright terms: Public domain W3C validator