Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselvlem Structured version   Visualization version   GIF version

Theorem evlselvlem 42559
Description: Lemma for evlselv 42560. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselvlem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlselvlem.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
evlselvlem.c 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
evlselvlem.h 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
evlselvlem.i (𝜑𝐼𝑉)
evlselvlem.j (𝜑𝐽𝐼)
Assertion
Ref Expression
evlselvlem (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Distinct variable groups:   𝑓,𝑐,𝐼   𝑓,𝐽   𝐼,𝑐,𝑒,   𝐽,𝑐,𝑒,𝑔   𝐶,𝑐,𝑒   𝐷,𝑐,𝑒   𝐸,𝑐,𝑒   𝜑,𝑐,𝑒
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐶(𝑓,𝑔,)   𝐷(𝑓,𝑔,)   𝐸(𝑓,𝑔,)   𝐻(𝑒,𝑓,𝑔,,𝑐)   𝐼(𝑔)   𝐽()   𝑉(𝑒,𝑓,𝑔,,𝑐)

Proof of Theorem evlselvlem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evlselvlem.h . 2 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
2 evlselvlem.c . . . . . . 7 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21825 . . . . . 6 (𝑐𝐶𝑐:(𝐼𝐽)⟶ℕ0)
43ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐:(𝐼𝐽)⟶ℕ0)
5 evlselvlem.e . . . . . . 7 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
65psrbagf 21825 . . . . . 6 (𝑒𝐸𝑒:𝐽⟶ℕ0)
76ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒:𝐽⟶ℕ0)
8 disjdifr 4424 . . . . . 6 ((𝐼𝐽) ∩ 𝐽) = ∅
98a1i 11 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∩ 𝐽) = ∅)
104, 7, 9fun2d 6688 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
11 evlselvlem.j . . . . . . 7 (𝜑𝐽𝐼)
12 undifr 4434 . . . . . . 7 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1311, 12sylib 218 . . . . . 6 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1514feq2d 6636 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐𝑒):𝐼⟶ℕ0))
1610, 15mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):𝐼⟶ℕ0)
17 unexg 7679 . . . . . 6 ((𝑐𝐶𝑒𝐸) → (𝑐𝑒) ∈ V)
1817adantl 481 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ V)
19 0zd 12483 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 0 ∈ ℤ)
2010ffund 6656 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → Fun (𝑐𝑒))
212psrbagfsupp 21826 . . . . . . 7 (𝑐𝐶𝑐 finSupp 0)
2221ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 finSupp 0)
235psrbagfsupp 21826 . . . . . . 7 (𝑒𝐸𝑒 finSupp 0)
2423ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 finSupp 0)
2522, 24fsuppun 9277 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) supp 0) ∈ Fin)
2618, 19, 20, 25isfsuppd 9256 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) finSupp 0)
27 fcdmnn0fsuppg 12444 . . . . 5 (((𝑐𝑒) ∈ V ∧ (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2818, 10, 27syl2anc 584 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2926, 28mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) “ ℕ) ∈ Fin)
30 evlselvlem.i . . . . 5 (𝜑𝐼𝑉)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝐼𝑉)
32 evlselvlem.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3332psrbag 21824 . . . 4 (𝐼𝑉 → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3431, 33syl 17 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3516, 29, 34mpbir2and 713 . 2 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ 𝐷)
3630adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐼𝑉)
37 difssd 4088 . . 3 ((𝜑𝑑𝐷) → (𝐼𝐽) ⊆ 𝐼)
38 simpr 484 . . 3 ((𝜑𝑑𝐷) → 𝑑𝐷)
3932, 2, 36, 37, 38psrbagres 42519 . 2 ((𝜑𝑑𝐷) → (𝑑 ↾ (𝐼𝐽)) ∈ 𝐶)
4011adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐽𝐼)
4132, 5, 36, 40, 38psrbagres 42519 . 2 ((𝜑𝑑𝐷) → (𝑑𝐽) ∈ 𝐸)
4232psrbagf 21825 . . . . . . . 8 (𝑑𝐷𝑑:𝐼⟶ℕ0)
4342adantl 481 . . . . . . 7 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
4443freld 6658 . . . . . 6 ((𝜑𝑑𝐷) → Rel 𝑑)
4543fdmd 6662 . . . . . . 7 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
4640, 12sylib 218 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
4745, 46eqtr4d 2767 . . . . . 6 ((𝜑𝑑𝐷) → dom 𝑑 = ((𝐼𝐽) ∪ 𝐽))
488a1i 11 . . . . . 6 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
49 reldisjun 5983 . . . . . 6 ((Rel 𝑑 ∧ dom 𝑑 = ((𝐼𝐽) ∪ 𝐽) ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5044, 47, 48, 49syl3anc 1373 . . . . 5 ((𝜑𝑑𝐷) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5150adantrl 716 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
52 uneq12 4114 . . . . 5 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑐𝑒) = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5352eqeq2d 2740 . . . 4 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑑 = (𝑐𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽))))
5451, 53syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → 𝑑 = (𝑐𝑒)))
554ffnd 6653 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 Fn (𝐼𝐽))
567ffnd 6653 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 Fn 𝐽)
57 fnunres1 6594 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5855, 56, 9, 57syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5958eqcomd 2735 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)))
60 fnunres2 6595 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6155, 56, 9, 60syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6261eqcomd 2735 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 = ((𝑐𝑒) ↾ 𝐽))
6359, 62jca 511 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6463adantrr 717 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
65 reseq1 5924 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑 ↾ (𝐼𝐽)) = ((𝑐𝑒) ↾ (𝐼𝐽)))
6665eqeq2d 2740 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ↔ 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽))))
67 reseq1 5924 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑𝐽) = ((𝑐𝑒) ↾ 𝐽))
6867eqeq2d 2740 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑒 = (𝑑𝐽) ↔ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6966, 68anbi12d 632 . . . 4 (𝑑 = (𝑐𝑒) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽))))
7064, 69syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽))))
7154, 70impbid 212 . 2 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ 𝑑 = (𝑐𝑒)))
721, 35, 39, 41, 71f1o2d2 42206 1 (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284   class class class wbr 5092   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  Rel wrel 5624   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  (class class class)co 7349  cmpo 7351  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  0cc0 11009  cn 12128  0cn0 12384  cz 12471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472
This theorem is referenced by:  evlselv  42560
  Copyright terms: Public domain W3C validator