Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselvlem Structured version   Visualization version   GIF version

Theorem evlselvlem 41791
Description: Lemma for evlselv 41792. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselvlem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlselvlem.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
evlselvlem.c 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
evlselvlem.h 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
evlselvlem.i (𝜑𝐼𝑉)
evlselvlem.j (𝜑𝐽𝐼)
Assertion
Ref Expression
evlselvlem (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Distinct variable groups:   𝑓,𝑐,𝐼   𝑓,𝐽   𝐼,𝑐,𝑒,   𝐽,𝑐,𝑒,𝑔   𝐶,𝑐,𝑒   𝐷,𝑐,𝑒   𝐸,𝑐,𝑒   𝜑,𝑐,𝑒
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐶(𝑓,𝑔,)   𝐷(𝑓,𝑔,)   𝐸(𝑓,𝑔,)   𝐻(𝑒,𝑓,𝑔,,𝑐)   𝐼(𝑔)   𝐽()   𝑉(𝑒,𝑓,𝑔,,𝑐)

Proof of Theorem evlselvlem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evlselvlem.h . 2 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
2 evlselvlem.c . . . . . . 7 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21844 . . . . . 6 (𝑐𝐶𝑐:(𝐼𝐽)⟶ℕ0)
43ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐:(𝐼𝐽)⟶ℕ0)
5 evlselvlem.e . . . . . . 7 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
65psrbagf 21844 . . . . . 6 (𝑒𝐸𝑒:𝐽⟶ℕ0)
76ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒:𝐽⟶ℕ0)
8 disjdifr 4468 . . . . . 6 ((𝐼𝐽) ∩ 𝐽) = ∅
98a1i 11 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∩ 𝐽) = ∅)
104, 7, 9fun2d 6755 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
11 evlselvlem.j . . . . . . 7 (𝜑𝐽𝐼)
12 undifr 4478 . . . . . . 7 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1311, 12sylib 217 . . . . . 6 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1514feq2d 6702 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐𝑒):𝐼⟶ℕ0))
1610, 15mpbid 231 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):𝐼⟶ℕ0)
17 unexg 7745 . . . . . 6 ((𝑐𝐶𝑒𝐸) → (𝑐𝑒) ∈ V)
1817adantl 481 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ V)
19 0zd 12594 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 0 ∈ ℤ)
2010ffund 6720 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → Fun (𝑐𝑒))
212psrbagfsupp 21846 . . . . . . 7 (𝑐𝐶𝑐 finSupp 0)
2221ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 finSupp 0)
235psrbagfsupp 21846 . . . . . . 7 (𝑒𝐸𝑒 finSupp 0)
2423ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 finSupp 0)
2522, 24fsuppun 9404 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) supp 0) ∈ Fin)
2618, 19, 20, 25isfsuppd 9384 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) finSupp 0)
27 fcdmnn0fsuppg 12555 . . . . 5 (((𝑐𝑒) ∈ V ∧ (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2818, 10, 27syl2anc 583 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2926, 28mpbid 231 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) “ ℕ) ∈ Fin)
30 evlselvlem.i . . . . 5 (𝜑𝐼𝑉)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝐼𝑉)
32 evlselvlem.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3332psrbag 21843 . . . 4 (𝐼𝑉 → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3431, 33syl 17 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3516, 29, 34mpbir2and 712 . 2 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ 𝐷)
3630adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐼𝑉)
37 difssd 4128 . . 3 ((𝜑𝑑𝐷) → (𝐼𝐽) ⊆ 𝐼)
38 simpr 484 . . 3 ((𝜑𝑑𝐷) → 𝑑𝐷)
3932, 2, 36, 37, 38psrbagres 41748 . 2 ((𝜑𝑑𝐷) → (𝑑 ↾ (𝐼𝐽)) ∈ 𝐶)
4011adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐽𝐼)
4132, 5, 36, 40, 38psrbagres 41748 . 2 ((𝜑𝑑𝐷) → (𝑑𝐽) ∈ 𝐸)
4232psrbagf 21844 . . . . . . . 8 (𝑑𝐷𝑑:𝐼⟶ℕ0)
4342adantl 481 . . . . . . 7 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
4443freld 6722 . . . . . 6 ((𝜑𝑑𝐷) → Rel 𝑑)
4543fdmd 6727 . . . . . . 7 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
4640, 12sylib 217 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
4745, 46eqtr4d 2770 . . . . . 6 ((𝜑𝑑𝐷) → dom 𝑑 = ((𝐼𝐽) ∪ 𝐽))
488a1i 11 . . . . . 6 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
49 reldisjun 6030 . . . . . 6 ((Rel 𝑑 ∧ dom 𝑑 = ((𝐼𝐽) ∪ 𝐽) ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5044, 47, 48, 49syl3anc 1369 . . . . 5 ((𝜑𝑑𝐷) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5150adantrl 715 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
52 uneq12 4154 . . . . 5 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑐𝑒) = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5352eqeq2d 2738 . . . 4 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑑 = (𝑐𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽))))
5451, 53syl5ibrcom 246 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → 𝑑 = (𝑐𝑒)))
554ffnd 6717 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 Fn (𝐼𝐽))
567ffnd 6717 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 Fn 𝐽)
57 fnunres1 6660 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5855, 56, 9, 57syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5958eqcomd 2733 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)))
60 fnunres2 6661 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6155, 56, 9, 60syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6261eqcomd 2733 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 = ((𝑐𝑒) ↾ 𝐽))
6359, 62jca 511 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6463adantrr 716 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
65 reseq1 5973 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑 ↾ (𝐼𝐽)) = ((𝑐𝑒) ↾ (𝐼𝐽)))
6665eqeq2d 2738 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ↔ 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽))))
67 reseq1 5973 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑𝐽) = ((𝑐𝑒) ↾ 𝐽))
6867eqeq2d 2738 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑒 = (𝑑𝐽) ↔ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6966, 68anbi12d 630 . . . 4 (𝑑 = (𝑐𝑒) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽))))
7064, 69syl5ibrcom 246 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽))))
7154, 70impbid 211 . 2 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ 𝑑 = (𝑐𝑒)))
721, 35, 39, 41, 71f1o2d2 41696 1 (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3427  Vcvv 3469  cdif 3941  cun 3942  cin 3943  wss 3944  c0 4318   class class class wbr 5142   × cxp 5670  ccnv 5671  dom cdm 5672  cres 5674  cima 5675  Rel wrel 5677   Fn wfn 6537  wf 6538  1-1-ontowf1o 6541  (class class class)co 7414  cmpo 7416  m cmap 8838  Fincfn 8957   finSupp cfsupp 9379  0cc0 11132  cn 12236  0cn0 12496  cz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583
This theorem is referenced by:  evlselv  41792
  Copyright terms: Public domain W3C validator