Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselvlem Structured version   Visualization version   GIF version

Theorem evlselvlem 42541
Description: Lemma for evlselv 42542. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselvlem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlselvlem.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
evlselvlem.c 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
evlselvlem.h 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
evlselvlem.i (𝜑𝐼𝑉)
evlselvlem.j (𝜑𝐽𝐼)
Assertion
Ref Expression
evlselvlem (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Distinct variable groups:   𝑓,𝑐,𝐼   𝑓,𝐽   𝐼,𝑐,𝑒,   𝐽,𝑐,𝑒,𝑔   𝐶,𝑐,𝑒   𝐷,𝑐,𝑒   𝐸,𝑐,𝑒   𝜑,𝑐,𝑒
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐶(𝑓,𝑔,)   𝐷(𝑓,𝑔,)   𝐸(𝑓,𝑔,)   𝐻(𝑒,𝑓,𝑔,,𝑐)   𝐼(𝑔)   𝐽()   𝑉(𝑒,𝑓,𝑔,,𝑐)

Proof of Theorem evlselvlem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evlselvlem.h . 2 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
2 evlselvlem.c . . . . . . 7 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21961 . . . . . 6 (𝑐𝐶𝑐:(𝐼𝐽)⟶ℕ0)
43ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐:(𝐼𝐽)⟶ℕ0)
5 evlselvlem.e . . . . . . 7 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
65psrbagf 21961 . . . . . 6 (𝑒𝐸𝑒:𝐽⟶ℕ0)
76ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒:𝐽⟶ℕ0)
8 disjdifr 4496 . . . . . 6 ((𝐼𝐽) ∩ 𝐽) = ∅
98a1i 11 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∩ 𝐽) = ∅)
104, 7, 9fun2d 6785 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
11 evlselvlem.j . . . . . . 7 (𝜑𝐽𝐼)
12 undifr 4506 . . . . . . 7 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1311, 12sylib 218 . . . . . 6 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1514feq2d 6733 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐𝑒):𝐼⟶ℕ0))
1610, 15mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):𝐼⟶ℕ0)
17 unexg 7778 . . . . . 6 ((𝑐𝐶𝑒𝐸) → (𝑐𝑒) ∈ V)
1817adantl 481 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ V)
19 0zd 12651 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 0 ∈ ℤ)
2010ffund 6751 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → Fun (𝑐𝑒))
212psrbagfsupp 21962 . . . . . . 7 (𝑐𝐶𝑐 finSupp 0)
2221ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 finSupp 0)
235psrbagfsupp 21962 . . . . . . 7 (𝑒𝐸𝑒 finSupp 0)
2423ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 finSupp 0)
2522, 24fsuppun 9456 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) supp 0) ∈ Fin)
2618, 19, 20, 25isfsuppd 9436 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) finSupp 0)
27 fcdmnn0fsuppg 12612 . . . . 5 (((𝑐𝑒) ∈ V ∧ (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2818, 10, 27syl2anc 583 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2926, 28mpbid 232 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) “ ℕ) ∈ Fin)
30 evlselvlem.i . . . . 5 (𝜑𝐼𝑉)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝐼𝑉)
32 evlselvlem.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3332psrbag 21960 . . . 4 (𝐼𝑉 → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3431, 33syl 17 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3516, 29, 34mpbir2and 712 . 2 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ 𝐷)
3630adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐼𝑉)
37 difssd 4160 . . 3 ((𝜑𝑑𝐷) → (𝐼𝐽) ⊆ 𝐼)
38 simpr 484 . . 3 ((𝜑𝑑𝐷) → 𝑑𝐷)
3932, 2, 36, 37, 38psrbagres 42501 . 2 ((𝜑𝑑𝐷) → (𝑑 ↾ (𝐼𝐽)) ∈ 𝐶)
4011adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐽𝐼)
4132, 5, 36, 40, 38psrbagres 42501 . 2 ((𝜑𝑑𝐷) → (𝑑𝐽) ∈ 𝐸)
4232psrbagf 21961 . . . . . . . 8 (𝑑𝐷𝑑:𝐼⟶ℕ0)
4342adantl 481 . . . . . . 7 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
4443freld 6753 . . . . . 6 ((𝜑𝑑𝐷) → Rel 𝑑)
4543fdmd 6757 . . . . . . 7 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
4640, 12sylib 218 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
4745, 46eqtr4d 2783 . . . . . 6 ((𝜑𝑑𝐷) → dom 𝑑 = ((𝐼𝐽) ∪ 𝐽))
488a1i 11 . . . . . 6 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
49 reldisjun 6061 . . . . . 6 ((Rel 𝑑 ∧ dom 𝑑 = ((𝐼𝐽) ∪ 𝐽) ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5044, 47, 48, 49syl3anc 1371 . . . . 5 ((𝜑𝑑𝐷) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5150adantrl 715 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
52 uneq12 4186 . . . . 5 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑐𝑒) = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5352eqeq2d 2751 . . . 4 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑑 = (𝑐𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽))))
5451, 53syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → 𝑑 = (𝑐𝑒)))
554ffnd 6748 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 Fn (𝐼𝐽))
567ffnd 6748 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 Fn 𝐽)
57 fnunres1 6691 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5855, 56, 9, 57syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5958eqcomd 2746 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)))
60 fnunres2 6692 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6155, 56, 9, 60syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6261eqcomd 2746 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 = ((𝑐𝑒) ↾ 𝐽))
6359, 62jca 511 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6463adantrr 716 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
65 reseq1 6003 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑 ↾ (𝐼𝐽)) = ((𝑐𝑒) ↾ (𝐼𝐽)))
6665eqeq2d 2751 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ↔ 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽))))
67 reseq1 6003 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑𝐽) = ((𝑐𝑒) ↾ 𝐽))
6867eqeq2d 2751 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑒 = (𝑑𝐽) ↔ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6966, 68anbi12d 631 . . . 4 (𝑑 = (𝑐𝑒) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽))))
7064, 69syl5ibrcom 247 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽))))
7154, 70impbid 212 . 2 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ 𝑑 = (𝑐𝑒)))
721, 35, 39, 41, 71f1o2d2 42228 1 (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  Rel wrel 5705   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  cn 12293  0cn0 12553  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640
This theorem is referenced by:  evlselv  42542
  Copyright terms: Public domain W3C validator