| Step | Hyp | Ref
| Expression |
| 1 | | evlselvlem.h |
. 2
⊢ 𝐻 = (𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸 ↦ (𝑐 ∪ 𝑒)) |
| 2 | | evlselvlem.c |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 3 | 2 | psrbagf 21938 |
. . . . . 6
⊢ (𝑐 ∈ 𝐶 → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
| 4 | 3 | ad2antrl 728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
| 5 | | evlselvlem.e |
. . . . . . 7
⊢ 𝐸 = {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin} |
| 6 | 5 | psrbagf 21938 |
. . . . . 6
⊢ (𝑒 ∈ 𝐸 → 𝑒:𝐽⟶ℕ0) |
| 7 | 6 | ad2antll 729 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒:𝐽⟶ℕ0) |
| 8 | | disjdifr 4473 |
. . . . . 6
⊢ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅ |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
| 10 | 4, 7, 9 | fun2d 6772 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0) |
| 11 | | evlselvlem.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| 12 | | undifr 4483 |
. . . . . . 7
⊢ (𝐽 ⊆ 𝐼 ↔ ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 13 | 11, 12 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 15 | 14 | feq2d 6722 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐 ∪ 𝑒):𝐼⟶ℕ0)) |
| 16 | 10, 15 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒):𝐼⟶ℕ0) |
| 17 | | unexg 7763 |
. . . . . 6
⊢ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) → (𝑐 ∪ 𝑒) ∈ V) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) ∈ V) |
| 19 | | 0zd 12625 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 0 ∈ ℤ) |
| 20 | 10 | ffund 6740 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → Fun (𝑐 ∪ 𝑒)) |
| 21 | 2 | psrbagfsupp 21939 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐶 → 𝑐 finSupp 0) |
| 22 | 21 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 finSupp 0) |
| 23 | 5 | psrbagfsupp 21939 |
. . . . . . 7
⊢ (𝑒 ∈ 𝐸 → 𝑒 finSupp 0) |
| 24 | 23 | ad2antll 729 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 finSupp 0) |
| 25 | 22, 24 | fsuppun 9427 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) supp 0) ∈ Fin) |
| 26 | 18, 19, 20, 25 | isfsuppd 9406 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) finSupp 0) |
| 27 | | fcdmnn0fsuppg 12586 |
. . . . 5
⊢ (((𝑐 ∪ 𝑒) ∈ V ∧ (𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐 ∪ 𝑒) finSupp 0 ↔ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin)) |
| 28 | 18, 10, 27 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) finSupp 0 ↔ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin)) |
| 29 | 26, 28 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin) |
| 30 | | evlselvlem.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝐼 ∈ 𝑉) |
| 32 | | evlselvlem.d |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 33 | 32 | psrbag 21937 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ((𝑐 ∪ 𝑒) ∈ 𝐷 ↔ ((𝑐 ∪ 𝑒):𝐼⟶ℕ0 ∧ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin))) |
| 34 | 31, 33 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ∈ 𝐷 ↔ ((𝑐 ∪ 𝑒):𝐼⟶ℕ0 ∧ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin))) |
| 35 | 16, 29, 34 | mpbir2and 713 |
. 2
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) ∈ 𝐷) |
| 36 | 30 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 37 | | difssd 4137 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
| 38 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ 𝐷) |
| 39 | 32, 2, 36, 37, 38 | psrbagres 42556 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑑 ↾ (𝐼 ∖ 𝐽)) ∈ 𝐶) |
| 40 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝐽 ⊆ 𝐼) |
| 41 | 32, 5, 36, 40, 38 | psrbagres 42556 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑑 ↾ 𝐽) ∈ 𝐸) |
| 42 | 32 | psrbagf 21938 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝐷 → 𝑑:𝐼⟶ℕ0) |
| 43 | 42 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑:𝐼⟶ℕ0) |
| 44 | 43 | freld 6742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → Rel 𝑑) |
| 45 | 43 | fdmd 6746 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → dom 𝑑 = 𝐼) |
| 46 | 40, 12 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 47 | 45, 46 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → dom 𝑑 = ((𝐼 ∖ 𝐽) ∪ 𝐽)) |
| 48 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
| 49 | | reldisjun 6050 |
. . . . . 6
⊢ ((Rel
𝑑 ∧ dom 𝑑 = ((𝐼 ∖ 𝐽) ∪ 𝐽) ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
| 50 | 44, 47, 48, 49 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
| 51 | 50 | adantrl 716 |
. . . 4
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
| 52 | | uneq12 4163 |
. . . . 5
⊢ ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → (𝑐 ∪ 𝑒) = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
| 53 | 52 | eqeq2d 2748 |
. . . 4
⊢ ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → (𝑑 = (𝑐 ∪ 𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽)))) |
| 54 | 51, 53 | syl5ibrcom 247 |
. . 3
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → 𝑑 = (𝑐 ∪ 𝑒))) |
| 55 | 4 | ffnd 6737 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 Fn (𝐼 ∖ 𝐽)) |
| 56 | 7 | ffnd 6737 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 Fn 𝐽) |
| 57 | | fnunres1 6680 |
. . . . . . . 8
⊢ ((𝑐 Fn (𝐼 ∖ 𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) = 𝑐) |
| 58 | 55, 56, 9, 57 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) = 𝑐) |
| 59 | 58 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽))) |
| 60 | | fnunres2 6681 |
. . . . . . . 8
⊢ ((𝑐 Fn (𝐼 ∖ 𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑐 ∪ 𝑒) ↾ 𝐽) = 𝑒) |
| 61 | 55, 56, 9, 60 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ↾ 𝐽) = 𝑒) |
| 62 | 61 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽)) |
| 63 | 59, 62 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
| 64 | 63 | adantrr 717 |
. . . 4
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
| 65 | | reseq1 5991 |
. . . . . 6
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑑 ↾ (𝐼 ∖ 𝐽)) = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽))) |
| 66 | 65 | eqeq2d 2748 |
. . . . 5
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ↔ 𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)))) |
| 67 | | reseq1 5991 |
. . . . . 6
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑑 ↾ 𝐽) = ((𝑐 ∪ 𝑒) ↾ 𝐽)) |
| 68 | 67 | eqeq2d 2748 |
. . . . 5
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑒 = (𝑑 ↾ 𝐽) ↔ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
| 69 | 66, 68 | anbi12d 632 |
. . . 4
⊢ (𝑑 = (𝑐 ∪ 𝑒) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) ↔ (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽)))) |
| 70 | 64, 69 | syl5ibrcom 247 |
. . 3
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → (𝑑 = (𝑐 ∪ 𝑒) → (𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)))) |
| 71 | 54, 70 | impbid 212 |
. 2
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) ↔ 𝑑 = (𝑐 ∪ 𝑒))) |
| 72 | 1, 35, 39, 41, 71 | f1o2d2 42274 |
1
⊢ (𝜑 → 𝐻:(𝐶 × 𝐸)–1-1-onto→𝐷) |