Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > focofo | Structured version Visualization version GIF version |
Description: Composition of onto functions. Generalisation of foco 6686. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focofo | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6672 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fcof 6607 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
4 | 3 | 3adant3 1130 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
5 | rnco 6145 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) = ran (𝐹 ↾ ran 𝐺) | |
6 | 1 | freld 6590 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Rel 𝐹) |
7 | 6 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → Rel 𝐹) |
8 | fdm 6593 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
9 | 8 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐴 = dom 𝐹) |
11 | 10 | sseq1d 3948 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺)) |
12 | 11 | biimpa 476 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺) |
13 | relssres 5921 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹) | |
14 | 13 | rneqd 5836 | . . . . 5 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
15 | 7, 12, 14 | 3imp3i2an 1343 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
16 | forn 6675 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
17 | 16 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵) |
18 | 15, 17 | eqtrd 2778 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵) |
19 | 5, 18 | eqtrid 2790 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ∘ 𝐺) = 𝐵) |
20 | dffo2 6676 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵 ↔ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵 ∧ ran (𝐹 ∘ 𝐺) = 𝐵)) | |
21 | 4, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 Rel wrel 5585 Fun wfun 6412 ⟶wf 6414 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: foco 6686 funfocofob 44457 |
Copyright terms: Public domain | W3C validator |