MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focofo Structured version   Visualization version   GIF version

Theorem focofo 6701
Description: Composition of onto functions. Generalisation of foco 6702. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focofo ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)

Proof of Theorem focofo
StepHypRef Expression
1 fof 6688 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 fcof 6623 . . . 4 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
31, 2sylan 580 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
433adant3 1131 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
5 rnco 6156 . . 3 ran (𝐹𝐺) = ran (𝐹 ↾ ran 𝐺)
61freld 6606 . . . . . 6 (𝐹:𝐴onto𝐵 → Rel 𝐹)
763ad2ant1 1132 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → Rel 𝐹)
8 fdm 6609 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
98eqcomd 2744 . . . . . . . 8 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
101, 9syl 17 . . . . . . 7 (𝐹:𝐴onto𝐵𝐴 = dom 𝐹)
1110sseq1d 3952 . . . . . 6 (𝐹:𝐴onto𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺))
1211biimpa 477 . . . . 5 ((𝐹:𝐴onto𝐵𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺)
13 relssres 5932 . . . . . 6 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹)
1413rneqd 5847 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
157, 12, 143imp3i2an 1344 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
16 forn 6691 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
17163ad2ant1 1132 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵)
1815, 17eqtrd 2778 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵)
195, 18eqtrid 2790 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹𝐺) = 𝐵)
20 dffo2 6692 . 2 ((𝐹𝐺):(𝐺𝐴)–onto𝐵 ↔ ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ∧ ran (𝐹𝐺) = 𝐵))
214, 19, 20sylanbrc 583 1 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wss 3887  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Rel wrel 5594  Fun wfun 6427  wf 6429  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439
This theorem is referenced by:  foco  6702  funfocofob  44570
  Copyright terms: Public domain W3C validator