| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > focofo | Structured version Visualization version GIF version | ||
| Description: Composition of onto functions. Generalisation of foco 6789. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| focofo | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6775 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fcof 6714 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
| 5 | rnco 6228 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) = ran (𝐹 ↾ ran 𝐺) | |
| 6 | 1 | freld 6697 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Rel 𝐹) |
| 7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → Rel 𝐹) |
| 8 | fdm 6700 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 9 | 8 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
| 10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐴 = dom 𝐹) |
| 11 | 10 | sseq1d 3981 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺)) |
| 12 | 11 | biimpa 476 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺) |
| 13 | relssres 5996 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹) | |
| 14 | 13 | rneqd 5905 | . . . . 5 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
| 15 | 7, 12, 14 | 3imp3i2an 1346 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
| 16 | forn 6778 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵) |
| 18 | 15, 17 | eqtrd 2765 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵) |
| 19 | 5, 18 | eqtrid 2777 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ∘ 𝐺) = 𝐵) |
| 20 | dffo2 6779 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵 ↔ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵 ∧ ran (𝐹 ∘ 𝐺) = 𝐵)) | |
| 21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 ∘ ccom 5645 Rel wrel 5646 Fun wfun 6508 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: foco 6789 funfocofob 47083 |
| Copyright terms: Public domain | W3C validator |