MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focofo Structured version   Visualization version   GIF version

Theorem focofo 6749
Description: Composition of onto functions. Generalisation of foco 6750. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focofo ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)

Proof of Theorem focofo
StepHypRef Expression
1 fof 6736 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 fcof 6675 . . . 4 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
31, 2sylan 580 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
433adant3 1132 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
5 rnco 6201 . . 3 ran (𝐹𝐺) = ran (𝐹 ↾ ran 𝐺)
61freld 6658 . . . . . 6 (𝐹:𝐴onto𝐵 → Rel 𝐹)
763ad2ant1 1133 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → Rel 𝐹)
8 fdm 6661 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
98eqcomd 2735 . . . . . . . 8 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
101, 9syl 17 . . . . . . 7 (𝐹:𝐴onto𝐵𝐴 = dom 𝐹)
1110sseq1d 3967 . . . . . 6 (𝐹:𝐴onto𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺))
1211biimpa 476 . . . . 5 ((𝐹:𝐴onto𝐵𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺)
13 relssres 5973 . . . . . 6 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹)
1413rneqd 5880 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
157, 12, 143imp3i2an 1346 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
16 forn 6739 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
17163ad2ant1 1133 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵)
1815, 17eqtrd 2764 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵)
195, 18eqtrid 2776 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹𝐺) = 𝐵)
20 dffo2 6740 . 2 ((𝐹𝐺):(𝐺𝐴)–onto𝐵 ↔ ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ∧ ran (𝐹𝐺) = 𝐵))
214, 19, 20sylanbrc 583 1 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wss 3903  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Rel wrel 5624  Fun wfun 6476  wf 6478  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488
This theorem is referenced by:  foco  6750  funfocofob  47072
  Copyright terms: Public domain W3C validator