MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focofo Structured version   Visualization version   GIF version

Theorem focofo 6624
Description: Composition of onto functions. Generalisation of foco 6625. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
focofo ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)

Proof of Theorem focofo
StepHypRef Expression
1 fof 6611 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 fcof 6546 . . . 4 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
31, 2sylan 583 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
433adant3 1134 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
5 rnco 6096 . . 3 ran (𝐹𝐺) = ran (𝐹 ↾ ran 𝐺)
61freld 6529 . . . . . 6 (𝐹:𝐴onto𝐵 → Rel 𝐹)
763ad2ant1 1135 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → Rel 𝐹)
8 fdm 6532 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
98eqcomd 2742 . . . . . . . 8 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
101, 9syl 17 . . . . . . 7 (𝐹:𝐴onto𝐵𝐴 = dom 𝐹)
1110sseq1d 3918 . . . . . 6 (𝐹:𝐴onto𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺))
1211biimpa 480 . . . . 5 ((𝐹:𝐴onto𝐵𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺)
13 relssres 5877 . . . . . 6 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹)
1413rneqd 5792 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
157, 12, 143imp3i2an 1347 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹)
16 forn 6614 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
17163ad2ant1 1135 . . . 4 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵)
1815, 17eqtrd 2771 . . 3 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵)
195, 18syl5eq 2783 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → ran (𝐹𝐺) = 𝐵)
20 dffo2 6615 . 2 ((𝐹𝐺):(𝐺𝐴)–onto𝐵 ↔ ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ∧ ran (𝐹𝐺) = 𝐵))
214, 19, 20sylanbrc 586 1 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐺𝐴 ⊆ ran 𝐺) → (𝐹𝐺):(𝐺𝐴)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wss 3853  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  ccom 5540  Rel wrel 5541  Fun wfun 6352  wf 6354  ontowfo 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364
This theorem is referenced by:  foco  6625  funfocofob  44185
  Copyright terms: Public domain W3C validator