![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > focofo | Structured version Visualization version GIF version |
Description: Composition of onto functions. Generalisation of foco 6848. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
focofo | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6834 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fcof 6770 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
5 | rnco 6283 | . . 3 ⊢ ran (𝐹 ∘ 𝐺) = ran (𝐹 ↾ ran 𝐺) | |
6 | 1 | freld 6753 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → Rel 𝐹) |
7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → Rel 𝐹) |
8 | fdm 6756 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
9 | 8 | eqcomd 2746 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 = dom 𝐹) |
10 | 1, 9 | syl 17 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐴 = dom 𝐹) |
11 | 10 | sseq1d 4040 | . . . . . 6 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ⊆ ran 𝐺 ↔ dom 𝐹 ⊆ ran 𝐺)) |
12 | 11 | biimpa 476 | . . . . 5 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ⊆ ran 𝐺) → dom 𝐹 ⊆ ran 𝐺) |
13 | relssres 6051 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → (𝐹 ↾ ran 𝐺) = 𝐹) | |
14 | 13 | rneqd 5963 | . . . . 5 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
15 | 7, 12, 14 | 3imp3i2an 1345 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = ran 𝐹) |
16 | forn 6837 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran 𝐹 = 𝐵) |
18 | 15, 17 | eqtrd 2780 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ↾ ran 𝐺) = 𝐵) |
19 | 5, 18 | eqtrid 2792 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → ran (𝐹 ∘ 𝐺) = 𝐵) |
20 | dffo2 6838 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵 ↔ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵 ∧ ran (𝐹 ∘ 𝐺) = 𝐵)) | |
21 | 4, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 |
This theorem is referenced by: foco 6848 funfocofob 46993 |
Copyright terms: Public domain | W3C validator |