![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6736 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6670 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5693 Fn wfn 6557 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: freld 6742 fssxp 6763 fimadmfoALT 6831 foconst 6835 fsn 7154 fnwelem 8154 mapsnd 8924 axdc3lem4 10490 imasless 17586 gimcnv 19297 gsumval3 19939 rngimcnv 20472 lmimcnv 21083 mattpostpos 22475 hmeocnv 23785 metn0 24385 rlimcnp2 27023 wlkn0 29653 tocyccntz 33146 mbfresfi 37652 rimcnv 42503 seff 44304 fresin2 45114 cncfuni 45841 fourierdlem48 46109 fourierdlem49 46110 fourierdlem113 46174 sge0cl 46336 |
Copyright terms: Public domain | W3C validator |