| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6691 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6623 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5646 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: freld 6697 fssxp 6718 fimadmfoALT 6786 foconst 6790 fsn 7110 fnwelem 8113 mapsnd 8862 axdc3lem4 10413 imasless 17510 gimcnv 19206 gsumval3 19844 rngimcnv 20372 lmimcnv 20981 mattpostpos 22348 hmeocnv 23656 metn0 24255 rlimcnp2 26883 wlkn0 29556 cyclnumvtx 29737 tocyccntz 33108 mbfresfi 37667 rimcnv 42512 seff 44305 fresin2 45173 cncfuni 45891 fourierdlem48 46159 fourierdlem49 46160 fourierdlem113 46224 sge0cl 46386 |
| Copyright terms: Public domain | W3C validator |