Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6638 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6574 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5613 Fn wfn 6461 ⟶wf 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fun 6468 df-fn 6469 df-f 6470 |
This theorem is referenced by: freld 6644 fssxp 6666 fimadmfoALT 6737 foconst 6741 fsn 7047 fnwelem 8018 mapsnd 8724 axdc3lem4 10289 imasless 17328 gimcnv 18959 gsumval3 19583 lmimcnv 20412 mattpostpos 21686 hmeocnv 22996 metn0 23596 rlimcnp2 26199 wlkn0 28124 tocyccntz 31546 mbfresfi 35895 seff 42161 fresin2 42949 cncfuni 43677 fourierdlem48 43945 fourierdlem49 43946 fourierdlem113 44010 sge0cl 44170 |
Copyright terms: Public domain | W3C validator |