Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6519 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5585 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: freld 6590 fssxp 6612 fimadmfoALT 6683 foconst 6687 fsn 6989 fnwelem 7943 mapsnd 8632 axdc3lem4 10140 imasless 17168 gimcnv 18798 gsumval3 19423 lmimcnv 20244 mattpostpos 21511 hmeocnv 22821 metn0 23421 rlimcnp2 26021 wlkn0 27890 tocyccntz 31313 mbfresfi 35750 seff 41816 fresin2 42597 cncfuni 43317 fourierdlem48 43585 fourierdlem49 43586 fourierdlem113 43650 sge0cl 43809 |
Copyright terms: Public domain | W3C validator |