Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6600 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6535 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5594 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: freld 6606 fssxp 6628 fimadmfoALT 6699 foconst 6703 fsn 7007 fnwelem 7972 mapsnd 8674 axdc3lem4 10209 imasless 17251 gimcnv 18883 gsumval3 19508 lmimcnv 20329 mattpostpos 21603 hmeocnv 22913 metn0 23513 rlimcnp2 26116 wlkn0 27988 tocyccntz 31411 mbfresfi 35823 seff 41927 fresin2 42708 cncfuni 43427 fourierdlem48 43695 fourierdlem49 43696 fourierdlem113 43760 sge0cl 43919 |
Copyright terms: Public domain | W3C validator |