| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6620 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5643 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: freld 6694 fssxp 6715 fimadmfoALT 6783 foconst 6787 fsn 7107 fnwelem 8110 mapsnd 8859 axdc3lem4 10406 imasless 17503 gimcnv 19199 gsumval3 19837 rngimcnv 20365 lmimcnv 20974 mattpostpos 22341 hmeocnv 23649 metn0 24248 rlimcnp2 26876 wlkn0 29549 cyclnumvtx 29730 tocyccntz 33101 mbfresfi 37660 rimcnv 42505 seff 44298 fresin2 45166 cncfuni 45884 fourierdlem48 46152 fourierdlem49 46153 fourierdlem113 46217 sge0cl 46379 |
| Copyright terms: Public domain | W3C validator |