| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6588 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5628 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: freld 6662 fssxp 6683 fimadmfoALT 6751 foconst 6755 fsn 7073 fnwelem 8071 mapsnd 8820 axdc3lem4 10366 imasless 17462 gimcnv 19164 gsumval3 19804 rngimcnv 20359 lmimcnv 20989 mattpostpos 22357 hmeocnv 23665 metn0 24264 rlimcnp2 26892 wlkn0 29584 cyclnumvtx 29763 tocyccntz 33099 mbfresfi 37645 rimcnv 42490 seff 44282 fresin2 45150 cncfuni 45868 fourierdlem48 46136 fourierdlem49 46137 fourierdlem113 46201 sge0cl 46363 |
| Copyright terms: Public domain | W3C validator |