![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version |
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnrel 6681 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Rel wrel 5705 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: freld 6753 fssxp 6775 fimadmfoALT 6845 foconst 6849 fsn 7169 fnwelem 8172 mapsnd 8944 axdc3lem4 10522 imasless 17600 gimcnv 19307 gsumval3 19949 rngimcnv 20482 lmimcnv 21089 mattpostpos 22481 hmeocnv 23791 metn0 24391 rlimcnp2 27027 wlkn0 29657 tocyccntz 33137 mbfresfi 37626 rimcnv 42472 seff 44278 fresin2 45079 cncfuni 45807 fourierdlem48 46075 fourierdlem49 46076 fourierdlem113 46140 sge0cl 46302 |
Copyright terms: Public domain | W3C validator |