MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frel Structured version   Visualization version   GIF version

Theorem frel 6643
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 6638 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 6574 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5613   Fn wfn 6461  wf 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-fun 6468  df-fn 6469  df-f 6470
This theorem is referenced by:  freld  6644  fssxp  6666  fimadmfoALT  6737  foconst  6741  fsn  7047  fnwelem  8018  mapsnd  8724  axdc3lem4  10289  imasless  17328  gimcnv  18959  gsumval3  19583  lmimcnv  20412  mattpostpos  21686  hmeocnv  22996  metn0  23596  rlimcnp2  26199  wlkn0  28124  tocyccntz  31546  mbfresfi  35895  seff  42161  fresin2  42949  cncfuni  43677  fourierdlem48  43945  fourierdlem49  43946  fourierdlem113  44010  sge0cl  44170
  Copyright terms: Public domain W3C validator