| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6706 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6640 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5659 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: freld 6712 fssxp 6733 fimadmfoALT 6801 foconst 6805 fsn 7125 fnwelem 8130 mapsnd 8900 axdc3lem4 10467 imasless 17554 gimcnv 19250 gsumval3 19888 rngimcnv 20416 lmimcnv 21025 mattpostpos 22392 hmeocnv 23700 metn0 24299 rlimcnp2 26928 wlkn0 29601 cyclnumvtx 29782 tocyccntz 33155 mbfresfi 37690 rimcnv 42540 seff 44333 fresin2 45196 cncfuni 45915 fourierdlem48 46183 fourierdlem49 46184 fourierdlem113 46248 sge0cl 46410 |
| Copyright terms: Public domain | W3C validator |