MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frel Structured version   Visualization version   GIF version

Theorem frel 6723
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 6718 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 6652 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5682   Fn wfn 6539  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  freld  6724  fssxp  6746  fimadmfoALT  6817  foconst  6821  fsn  7133  fnwelem  8117  mapsnd  8880  axdc3lem4  10448  imasless  17486  gimcnv  19141  gsumval3  19775  lmimcnv  20678  mattpostpos  21956  hmeocnv  23266  metn0  23866  rlimcnp2  26471  wlkn0  28878  tocyccntz  32303  mbfresfi  36534  rimcnv  41092  seff  43068  fresin2  43868  cncfuni  44602  fourierdlem48  44870  fourierdlem49  44871  fourierdlem113  44935  sge0cl  45097  rngimcnv  46705
  Copyright terms: Public domain W3C validator