MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frel Structured version   Visualization version   GIF version

Theorem frel 6661
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 6656 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 6588 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5628   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  freld  6662  fssxp  6683  fimadmfoALT  6751  foconst  6755  fsn  7073  fnwelem  8071  mapsnd  8820  axdc3lem4  10366  imasless  17462  gimcnv  19164  gsumval3  19804  rngimcnv  20359  lmimcnv  20989  mattpostpos  22357  hmeocnv  23665  metn0  24264  rlimcnp2  26892  wlkn0  29584  cyclnumvtx  29763  tocyccntz  33099  mbfresfi  37645  rimcnv  42490  seff  44282  fresin2  45150  cncfuni  45868  fourierdlem48  46136  fourierdlem49  46137  fourierdlem113  46201  sge0cl  46363
  Copyright terms: Public domain W3C validator