| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6651 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6583 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5621 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: freld 6657 fssxp 6678 fimadmfoALT 6746 foconst 6750 fsn 7068 fnwelem 8061 mapsnd 8810 axdc3lem4 10344 imasless 17444 gimcnv 19180 gsumval3 19820 rngimcnv 20375 lmimcnv 21002 mattpostpos 22370 hmeocnv 23678 metn0 24276 rlimcnp2 26904 wlkn0 29600 cyclnumvtx 29779 tocyccntz 33111 mbfresfi 37712 rimcnv 42556 seff 44348 fresin2 45215 cncfuni 45930 fourierdlem48 46198 fourierdlem49 46199 fourierdlem113 46263 sge0cl 46425 |
| Copyright terms: Public domain | W3C validator |