MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frel Structured version   Visualization version   GIF version

Theorem frel 6696
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 6691 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 6623 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5646   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  freld  6697  fssxp  6718  fimadmfoALT  6786  foconst  6790  fsn  7110  fnwelem  8113  mapsnd  8862  axdc3lem4  10413  imasless  17510  gimcnv  19206  gsumval3  19844  rngimcnv  20372  lmimcnv  20981  mattpostpos  22348  hmeocnv  23656  metn0  24255  rlimcnp2  26883  wlkn0  29556  cyclnumvtx  29737  tocyccntz  33108  mbfresfi  37667  rimcnv  42512  seff  44305  fresin2  45173  cncfuni  45891  fourierdlem48  46159  fourierdlem49  46160  fourierdlem113  46224  sge0cl  46386
  Copyright terms: Public domain W3C validator