| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frel | Structured version Visualization version GIF version | ||
| Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frel | ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnrel 6588 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Rel wrel 5624 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: freld 6662 fssxp 6683 fimadmfoALT 6751 foconst 6755 fsn 7074 fnwelem 8067 mapsnd 8816 axdc3lem4 10351 imasless 17446 gimcnv 19181 gsumval3 19821 rngimcnv 20376 lmimcnv 21003 mattpostpos 22370 hmeocnv 23678 metn0 24276 rlimcnp2 26904 wlkn0 29601 cyclnumvtx 29780 tocyccntz 33120 mbfresfi 37727 rimcnv 42636 seff 44427 fresin2 45294 cncfuni 46009 fourierdlem48 46277 fourierdlem49 46278 fourierdlem113 46342 sge0cl 46504 |
| Copyright terms: Public domain | W3C validator |