MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frel Structured version   Visualization version   GIF version

Theorem frel 6741
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 6736 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 6670 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 17 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5693   Fn wfn 6557  wf 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fun 6564  df-fn 6565  df-f 6566
This theorem is referenced by:  freld  6742  fssxp  6763  fimadmfoALT  6831  foconst  6835  fsn  7154  fnwelem  8154  mapsnd  8924  axdc3lem4  10490  imasless  17586  gimcnv  19297  gsumval3  19939  rngimcnv  20472  lmimcnv  21083  mattpostpos  22475  hmeocnv  23785  metn0  24385  rlimcnp2  27023  wlkn0  29653  tocyccntz  33146  mbfresfi  37652  rimcnv  42503  seff  44304  fresin2  45114  cncfuni  45841  fourierdlem48  46109  fourierdlem49  46110  fourierdlem113  46174  sge0cl  46336
  Copyright terms: Public domain W3C validator