Proof of Theorem funfocofob
Step | Hyp | Ref
| Expression |
1 | | fdmrn 6616 |
. . . . . . . 8
⊢ (Fun
𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
2 | 1 | biimpi 215 |
. . . . . . 7
⊢ (Fun
𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
3 | 2 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹) |
4 | 3 | adantr 480 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐹:dom 𝐹⟶ran 𝐹) |
5 | | eqid 2738 |
. . . . 5
⊢ (ran
𝐹 ∩ 𝐴) = (ran 𝐹 ∩ 𝐴) |
6 | | eqid 2738 |
. . . . 5
⊢ (◡𝐹 “ 𝐴) = (◡𝐹 “ 𝐴) |
7 | | eqid 2738 |
. . . . 5
⊢ (𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴)) |
8 | | simp2 1135 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐺:𝐴⟶𝐵) |
9 | 8 | adantr 480 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐺:𝐴⟶𝐵) |
10 | | eqid 2738 |
. . . . 5
⊢ (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) |
11 | | simpr 484 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
12 | 4, 5, 6, 7, 9, 10,
11 | fcoresfo 44452 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵) |
13 | 12 | ex 412 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵)) |
14 | | sseqin2 4146 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐴) = 𝐴) |
15 | 14 | biimpi 215 |
. . . . . . . 8
⊢ (𝐴 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐴) = 𝐴) |
16 | 15 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = 𝐴) |
17 | 8 | fdmd 6595 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴) |
18 | 16, 17 | eqtr4d 2781 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = dom 𝐺) |
19 | 18 | reseq2d 5880 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ dom 𝐺)) |
20 | 8 | freld 6590 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → Rel 𝐺) |
21 | | resdm 5925 |
. . . . . 6
⊢ (Rel
𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺) |
23 | 19, 22 | eqtrd 2778 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = 𝐺) |
24 | | eqidd 2739 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵) |
25 | 23, 16, 24 | foeq123d 6693 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
26 | 13, 25 | sylibd 238 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → 𝐺:𝐴–onto→𝐵)) |
27 | | simpr 484 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐺:𝐴–onto→𝐵) |
28 | | simpl1 1189 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐹) |
29 | | simpl3 1191 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 ⊆ ran 𝐹) |
30 | | focofo 6685 |
. . . 4
⊢ ((𝐺:𝐴–onto→𝐵 ∧ Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
31 | 27, 28, 29, 30 | syl3anc 1369 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
32 | 31 | ex 412 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺:𝐴–onto→𝐵 → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵)) |
33 | 26, 32 | impbid 211 |
1
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |