Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funfocofob Structured version   Visualization version   GIF version

Theorem funfocofob 47109
Description: If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
funfocofob ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem funfocofob
StepHypRef Expression
1 fdmrn 6677 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
21biimpi 216 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
323ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
43adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐹:dom 𝐹⟶ran 𝐹)
5 eqid 2731 . . . . 5 (ran 𝐹𝐴) = (ran 𝐹𝐴)
6 eqid 2731 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
7 eqid 2731 . . . . 5 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴))
8 simp2 1137 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐺:𝐴𝐵)
98adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐺:𝐴𝐵)
10 eqid 2731 . . . . 5 (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ (ran 𝐹𝐴))
11 simpr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
124, 5, 6, 7, 9, 10, 11fcoresfo 47102 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵)
1312ex 412 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵 → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵))
14 sseqin2 4168 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
1514biimpi 216 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
16153ad2ant3 1135 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = 𝐴)
178fdmd 6656 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴)
1816, 17eqtr4d 2769 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = dom 𝐺)
1918reseq2d 5923 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ dom 𝐺))
208freld 6652 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → Rel 𝐺)
21 resdm 5970 . . . . . 6 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
2220, 21syl 17 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺)
2319, 22eqtrd 2766 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = 𝐺)
24 eqidd 2732 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵)
2523, 16, 24foeq123d 6751 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
2613, 25sylibd 239 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
27 simpr 484 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐺:𝐴onto𝐵)
28 simpl1 1192 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → Fun 𝐹)
29 simpl3 1194 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐴 ⊆ ran 𝐹)
30 focofo 6743 . . . 4 ((𝐺:𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3127, 28, 29, 30syl3anc 1373 . . 3 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3231ex 412 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺:𝐴onto𝐵 → (𝐺𝐹):(𝐹𝐴)–onto𝐵))
3326, 32impbid 212 1 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  cin 3896  wss 3897  ccnv 5610  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615  Rel wrel 5616  Fun wfun 6470  wf 6472  ontowfo 6474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484
This theorem is referenced by:  fnfocofob  47110
  Copyright terms: Public domain W3C validator