Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funfocofob Structured version   Visualization version   GIF version

Theorem funfocofob 44185
Description: If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
funfocofob ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem funfocofob
StepHypRef Expression
1 fdmrn 6555 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
21biimpi 219 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
323ad2ant1 1135 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
43adantr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐹:dom 𝐹⟶ran 𝐹)
5 eqid 2736 . . . . 5 (ran 𝐹𝐴) = (ran 𝐹𝐴)
6 eqid 2736 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
7 eqid 2736 . . . . 5 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴))
8 simp2 1139 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐺:𝐴𝐵)
98adantr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐺:𝐴𝐵)
10 eqid 2736 . . . . 5 (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ (ran 𝐹𝐴))
11 simpr 488 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
124, 5, 6, 7, 9, 10, 11fcoresfo 44180 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵)
1312ex 416 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵 → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵))
14 sseqin2 4116 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
1514biimpi 219 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
16153ad2ant3 1137 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = 𝐴)
178fdmd 6534 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴)
1816, 17eqtr4d 2774 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = dom 𝐺)
1918reseq2d 5836 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ dom 𝐺))
208freld 6529 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → Rel 𝐺)
21 resdm 5881 . . . . . 6 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
2220, 21syl 17 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺)
2319, 22eqtrd 2771 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = 𝐺)
24 eqidd 2737 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵)
2523, 16, 24foeq123d 6632 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
2613, 25sylibd 242 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
27 simpr 488 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐺:𝐴onto𝐵)
28 simpl1 1193 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → Fun 𝐹)
29 simpl3 1195 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐴 ⊆ ran 𝐹)
30 focofo 6624 . . . 4 ((𝐺:𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3127, 28, 29, 30syl3anc 1373 . . 3 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3231ex 416 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺:𝐴onto𝐵 → (𝐺𝐹):(𝐹𝐴)–onto𝐵))
3326, 32impbid 215 1 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  cin 3852  wss 3853  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  ccom 5540  Rel wrel 5541  Fun wfun 6352  wf 6354  ontowfo 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366
This theorem is referenced by:  fnfocofob  44186
  Copyright terms: Public domain W3C validator