Proof of Theorem funfocofob
| Step | Hyp | Ref
| Expression |
| 1 | | fdmrn 6733 |
. . . . . . . 8
⊢ (Fun
𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) |
| 2 | 1 | biimpi 216 |
. . . . . . 7
⊢ (Fun
𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 3 | 2 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐹:dom 𝐹⟶ran 𝐹) |
| 5 | | eqid 2734 |
. . . . 5
⊢ (ran
𝐹 ∩ 𝐴) = (ran 𝐹 ∩ 𝐴) |
| 6 | | eqid 2734 |
. . . . 5
⊢ (◡𝐹 “ 𝐴) = (◡𝐹 “ 𝐴) |
| 7 | | eqid 2734 |
. . . . 5
⊢ (𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴)) |
| 8 | | simp2 1137 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐺:𝐴⟶𝐵) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐺:𝐴⟶𝐵) |
| 10 | | eqid 2734 |
. . . . 5
⊢ (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) |
| 11 | | simpr 484 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
| 12 | 4, 5, 6, 7, 9, 10,
11 | fcoresfo 47028 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵) |
| 13 | 12 | ex 412 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵)) |
| 14 | | sseqin2 4196 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐴) = 𝐴) |
| 15 | 14 | biimpi 216 |
. . . . . . . 8
⊢ (𝐴 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐴) = 𝐴) |
| 16 | 15 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = 𝐴) |
| 17 | 8 | fdmd 6712 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴) |
| 18 | 16, 17 | eqtr4d 2772 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = dom 𝐺) |
| 19 | 18 | reseq2d 5963 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ dom 𝐺)) |
| 20 | 8 | freld 6708 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → Rel 𝐺) |
| 21 | | resdm 6010 |
. . . . . 6
⊢ (Rel
𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) |
| 22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺) |
| 23 | 19, 22 | eqtrd 2769 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = 𝐺) |
| 24 | | eqidd 2735 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵) |
| 25 | 23, 16, 24 | foeq123d 6807 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
| 26 | 13, 25 | sylibd 239 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → 𝐺:𝐴–onto→𝐵)) |
| 27 | | simpr 484 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐺:𝐴–onto→𝐵) |
| 28 | | simpl1 1191 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐹) |
| 29 | | simpl3 1193 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 ⊆ ran 𝐹) |
| 30 | | focofo 6799 |
. . . 4
⊢ ((𝐺:𝐴–onto→𝐵 ∧ Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
| 31 | 27, 28, 29, 30 | syl3anc 1372 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) |
| 32 | 31 | ex 412 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺:𝐴–onto→𝐵 → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵)) |
| 33 | 26, 32 | impbid 212 |
1
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |