Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funfocofob Structured version   Visualization version   GIF version

Theorem funfocofob 44457
Description: If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
funfocofob ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem funfocofob
StepHypRef Expression
1 fdmrn 6616 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
21biimpi 215 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
323ad2ant1 1131 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
43adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐹:dom 𝐹⟶ran 𝐹)
5 eqid 2738 . . . . 5 (ran 𝐹𝐴) = (ran 𝐹𝐴)
6 eqid 2738 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
7 eqid 2738 . . . . 5 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴))
8 simp2 1135 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐺:𝐴𝐵)
98adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐺:𝐴𝐵)
10 eqid 2738 . . . . 5 (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ (ran 𝐹𝐴))
11 simpr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
124, 5, 6, 7, 9, 10, 11fcoresfo 44452 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵)
1312ex 412 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵 → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵))
14 sseqin2 4146 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
1514biimpi 215 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
16153ad2ant3 1133 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = 𝐴)
178fdmd 6595 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴)
1816, 17eqtr4d 2781 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = dom 𝐺)
1918reseq2d 5880 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ dom 𝐺))
208freld 6590 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → Rel 𝐺)
21 resdm 5925 . . . . . 6 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
2220, 21syl 17 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺)
2319, 22eqtrd 2778 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = 𝐺)
24 eqidd 2739 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵)
2523, 16, 24foeq123d 6693 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
2613, 25sylibd 238 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
27 simpr 484 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐺:𝐴onto𝐵)
28 simpl1 1189 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → Fun 𝐹)
29 simpl3 1191 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐴 ⊆ ran 𝐹)
30 focofo 6685 . . . 4 ((𝐺:𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3127, 28, 29, 30syl3anc 1369 . . 3 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3231ex 412 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺:𝐴onto𝐵 → (𝐺𝐹):(𝐹𝐴)–onto𝐵))
3326, 32impbid 211 1 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  cin 3882  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Rel wrel 5585  Fun wfun 6412  wf 6414  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426
This theorem is referenced by:  fnfocofob  44458
  Copyright terms: Public domain W3C validator