Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funfocofob Structured version   Visualization version   GIF version

Theorem funfocofob 47035
Description: If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
funfocofob ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem funfocofob
StepHypRef Expression
1 fdmrn 6733 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
21biimpi 216 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
323ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
43adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐹:dom 𝐹⟶ran 𝐹)
5 eqid 2734 . . . . 5 (ran 𝐹𝐴) = (ran 𝐹𝐴)
6 eqid 2734 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
7 eqid 2734 . . . . 5 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴))
8 simp2 1137 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐺:𝐴𝐵)
98adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐺:𝐴𝐵)
10 eqid 2734 . . . . 5 (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ (ran 𝐹𝐴))
11 simpr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
124, 5, 6, 7, 9, 10, 11fcoresfo 47028 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵)
1312ex 412 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵 → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵))
14 sseqin2 4196 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
1514biimpi 216 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
16153ad2ant3 1135 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = 𝐴)
178fdmd 6712 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴)
1816, 17eqtr4d 2772 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = dom 𝐺)
1918reseq2d 5963 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ dom 𝐺))
208freld 6708 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → Rel 𝐺)
21 resdm 6010 . . . . . 6 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
2220, 21syl 17 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺)
2319, 22eqtrd 2769 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = 𝐺)
24 eqidd 2735 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵)
2523, 16, 24foeq123d 6807 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
2613, 25sylibd 239 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
27 simpr 484 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐺:𝐴onto𝐵)
28 simpl1 1191 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → Fun 𝐹)
29 simpl3 1193 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐴 ⊆ ran 𝐹)
30 focofo 6799 . . . 4 ((𝐺:𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3127, 28, 29, 30syl3anc 1372 . . 3 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3231ex 412 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺:𝐴onto𝐵 → (𝐺𝐹):(𝐹𝐴)–onto𝐵))
3326, 32impbid 212 1 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  cin 3923  wss 3924  ccnv 5650  dom cdm 5651  ran crn 5652  cres 5653  cima 5654  ccom 5655  Rel wrel 5656  Fun wfun 6521  wf 6523  ontowfo 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-fo 6533  df-fv 6535
This theorem is referenced by:  fnfocofob  47036
  Copyright terms: Public domain W3C validator