Proof of Theorem funfocofob
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fdmrn 6766 | . . . . . . . 8
⊢ (Fun
𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | 
| 2 | 1 | biimpi 216 | . . . . . . 7
⊢ (Fun
𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | 
| 3 | 2 | 3ad2ant1 1133 | . . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹) | 
| 4 | 3 | adantr 480 | . . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐹:dom 𝐹⟶ran 𝐹) | 
| 5 |  | eqid 2736 | . . . . 5
⊢ (ran
𝐹 ∩ 𝐴) = (ran 𝐹 ∩ 𝐴) | 
| 6 |  | eqid 2736 | . . . . 5
⊢ (◡𝐹 “ 𝐴) = (◡𝐹 “ 𝐴) | 
| 7 |  | eqid 2736 | . . . . 5
⊢ (𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴)) | 
| 8 |  | simp2 1137 | . . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐺:𝐴⟶𝐵) | 
| 9 | 8 | adantr 480 | . . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → 𝐺:𝐴⟶𝐵) | 
| 10 |  | eqid 2736 | . . . . 5
⊢ (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) | 
| 11 |  | simpr 484 | . . . . 5
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) | 
| 12 | 4, 5, 6, 7, 9, 10,
11 | fcoresfo 47088 | . . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵) | 
| 13 | 12 | ex 412 | . . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵)) | 
| 14 |  | sseqin2 4222 | . . . . . . . . 9
⊢ (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐴) = 𝐴) | 
| 15 | 14 | biimpi 216 | . . . . . . . 8
⊢ (𝐴 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐴) = 𝐴) | 
| 16 | 15 | 3ad2ant3 1135 | . . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = 𝐴) | 
| 17 | 8 | fdmd 6745 | . . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴) | 
| 18 | 16, 17 | eqtr4d 2779 | . . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (ran 𝐹 ∩ 𝐴) = dom 𝐺) | 
| 19 | 18 | reseq2d 5996 | . . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = (𝐺 ↾ dom 𝐺)) | 
| 20 | 8 | freld 6741 | . . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → Rel 𝐺) | 
| 21 |  | resdm 6043 | . . . . . 6
⊢ (Rel
𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺) | 
| 22 | 20, 21 | syl 17 | . . . . 5
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺) | 
| 23 | 19, 22 | eqtrd 2776 | . . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹 ∩ 𝐴)) = 𝐺) | 
| 24 |  | eqidd 2737 | . . . 4
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵) | 
| 25 | 23, 16, 24 | foeq123d 6840 | . . 3
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹 ∩ 𝐴)):(ran 𝐹 ∩ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | 
| 26 | 13, 25 | sylibd 239 | . 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 → 𝐺:𝐴–onto→𝐵)) | 
| 27 |  | simpr 484 | . . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐺:𝐴–onto→𝐵) | 
| 28 |  | simpl1 1191 | . . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → Fun 𝐹) | 
| 29 |  | simpl3 1193 | . . . 4
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → 𝐴 ⊆ ran 𝐹) | 
| 30 |  | focofo 6832 | . . . 4
⊢ ((𝐺:𝐴–onto→𝐵 ∧ Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) | 
| 31 | 27, 28, 29, 30 | syl3anc 1372 | . . 3
⊢ (((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴–onto→𝐵) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵) | 
| 32 | 31 | ex 412 | . 2
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → (𝐺:𝐴–onto→𝐵 → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵)) | 
| 33 | 26, 32 | impbid 212 | 1
⊢ ((Fun
𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |