Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funfocofob Structured version   Visualization version   GIF version

Theorem funfocofob 47079
Description: If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.)
Assertion
Ref Expression
funfocofob ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem funfocofob
StepHypRef Expression
1 fdmrn 6719 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
21biimpi 216 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
323ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐹:dom 𝐹⟶ran 𝐹)
43adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐹:dom 𝐹⟶ran 𝐹)
5 eqid 2729 . . . . 5 (ran 𝐹𝐴) = (ran 𝐹𝐴)
6 eqid 2729 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
7 eqid 2729 . . . . 5 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴))
8 simp2 1137 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐺:𝐴𝐵)
98adantr 480 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → 𝐺:𝐴𝐵)
10 eqid 2729 . . . . 5 (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ (ran 𝐹𝐴))
11 simpr 484 . . . . 5 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
124, 5, 6, 7, 9, 10, 11fcoresfo 47072 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ (𝐺𝐹):(𝐹𝐴)–onto𝐵) → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵)
1312ex 412 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵 → (𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵))
14 sseqin2 4186 . . . . . . . . 9 (𝐴 ⊆ ran 𝐹 ↔ (ran 𝐹𝐴) = 𝐴)
1514biimpi 216 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (ran 𝐹𝐴) = 𝐴)
16153ad2ant3 1135 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = 𝐴)
178fdmd 6698 . . . . . . 7 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → dom 𝐺 = 𝐴)
1816, 17eqtr4d 2767 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (ran 𝐹𝐴) = dom 𝐺)
1918reseq2d 5950 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = (𝐺 ↾ dom 𝐺))
208freld 6694 . . . . . 6 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → Rel 𝐺)
21 resdm 5997 . . . . . 6 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
2220, 21syl 17 . . . . 5 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ dom 𝐺) = 𝐺)
2319, 22eqtrd 2764 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺 ↾ (ran 𝐹𝐴)) = 𝐺)
24 eqidd 2730 . . . 4 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → 𝐵 = 𝐵)
2523, 16, 24foeq123d 6793 . . 3 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺 ↾ (ran 𝐹𝐴)):(ran 𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
2613, 25sylibd 239 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
27 simpr 484 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐺:𝐴onto𝐵)
28 simpl1 1192 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → Fun 𝐹)
29 simpl3 1194 . . . 4 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → 𝐴 ⊆ ran 𝐹)
30 focofo 6785 . . . 4 ((𝐺:𝐴onto𝐵 ∧ Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3127, 28, 29, 30syl3anc 1373 . . 3 (((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) ∧ 𝐺:𝐴onto𝐵) → (𝐺𝐹):(𝐹𝐴)–onto𝐵)
3231ex 412 . 2 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → (𝐺:𝐴onto𝐵 → (𝐺𝐹):(𝐹𝐴)–onto𝐵))
3326, 32impbid 212 1 ((Fun 𝐹𝐺:𝐴𝐵𝐴 ⊆ ran 𝐹) → ((𝐺𝐹):(𝐹𝐴)–onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  cin 3913  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642  Rel wrel 5643  Fun wfun 6505  wf 6507  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519
This theorem is referenced by:  fnfocofob  47080
  Copyright terms: Public domain W3C validator