Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1cof1blem Structured version   Visualization version   GIF version

Theorem f1cof1blem 45770
Description: Lemma for f1cof1b 45771 and focofob 45774. (Contributed by AV, 18-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
f1cof1blem.s (𝜑 → ran 𝐹 = 𝐶)
Assertion
Ref Expression
f1cof1blem (𝜑 → ((𝑃 = 𝐴𝐸 = 𝐶) ∧ (𝑋 = 𝐹𝑌 = 𝐺)))

Proof of Theorem f1cof1blem
StepHypRef Expression
1 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
2 f1cof1blem.s . . . . . . 7 (𝜑 → ran 𝐹 = 𝐶)
32eqcomd 2738 . . . . . 6 (𝜑𝐶 = ran 𝐹)
43imaeq2d 6057 . . . . 5 (𝜑 → (𝐹𝐶) = (𝐹 “ ran 𝐹))
51, 4eqtrid 2784 . . . 4 (𝜑𝑃 = (𝐹 “ ran 𝐹))
6 cnvimarndm 6078 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
87fdmd 6725 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
96, 8eqtrid 2784 . . . 4 (𝜑 → (𝐹 “ ran 𝐹) = 𝐴)
105, 9eqtrd 2772 . . 3 (𝜑𝑃 = 𝐴)
11 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
12 simpr 485 . . . . . . 7 ((𝜑 ∧ ran 𝐹 = 𝐶) → ran 𝐹 = 𝐶)
1312ineq1d 4210 . . . . . 6 ((𝜑 ∧ ran 𝐹 = 𝐶) → (ran 𝐹𝐶) = (𝐶𝐶))
14 inidm 4217 . . . . . 6 (𝐶𝐶) = 𝐶
1513, 14eqtrdi 2788 . . . . 5 ((𝜑 ∧ ran 𝐹 = 𝐶) → (ran 𝐹𝐶) = 𝐶)
162, 15mpdan 685 . . . 4 (𝜑 → (ran 𝐹𝐶) = 𝐶)
1711, 16eqtrid 2784 . . 3 (𝜑𝐸 = 𝐶)
1810, 17jca 512 . 2 (𝜑 → (𝑃 = 𝐴𝐸 = 𝐶))
19 fcores.x . . . 4 𝑋 = (𝐹𝑃)
205, 6eqtrdi 2788 . . . . 5 (𝜑𝑃 = dom 𝐹)
2120reseq2d 5979 . . . 4 (𝜑 → (𝐹𝑃) = (𝐹 ↾ dom 𝐹))
2219, 21eqtrid 2784 . . 3 (𝜑𝑋 = (𝐹 ↾ dom 𝐹))
237freld 6720 . . . 4 (𝜑 → Rel 𝐹)
24 resdm 6024 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
2523, 24syl 17 . . 3 (𝜑 → (𝐹 ↾ dom 𝐹) = 𝐹)
2622, 25eqtrd 2772 . 2 (𝜑𝑋 = 𝐹)
27 fcores.y . . . 4 𝑌 = (𝐺𝐸)
28 fcores.g . . . . . . 7 (𝜑𝐺:𝐶𝐷)
2928fdmd 6725 . . . . . 6 (𝜑 → dom 𝐺 = 𝐶)
3017, 29eqtr4d 2775 . . . . 5 (𝜑𝐸 = dom 𝐺)
3130reseq2d 5979 . . . 4 (𝜑 → (𝐺𝐸) = (𝐺 ↾ dom 𝐺))
3227, 31eqtrid 2784 . . 3 (𝜑𝑌 = (𝐺 ↾ dom 𝐺))
3328freld 6720 . . . 4 (𝜑 → Rel 𝐺)
34 resdm 6024 . . . 4 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
3533, 34syl 17 . . 3 (𝜑 → (𝐺 ↾ dom 𝐺) = 𝐺)
3632, 35eqtrd 2772 . 2 (𝜑𝑌 = 𝐺)
3718, 26, 36jca32 516 1 (𝜑 → ((𝑃 = 𝐴𝐸 = 𝐶) ∧ (𝑋 = 𝐹𝑌 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  cin 3946  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  Rel wrel 5680  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544
This theorem is referenced by:  f1cof1b  45771
  Copyright terms: Public domain W3C validator