Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1cof1blem Structured version   Visualization version   GIF version

Theorem f1cof1blem 44455
Description: Lemma for f1cof1b 44456 and focofob 44459. (Contributed by AV, 18-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
f1cof1blem.s (𝜑 → ran 𝐹 = 𝐶)
Assertion
Ref Expression
f1cof1blem (𝜑 → ((𝑃 = 𝐴𝐸 = 𝐶) ∧ (𝑋 = 𝐹𝑌 = 𝐺)))

Proof of Theorem f1cof1blem
StepHypRef Expression
1 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
2 f1cof1blem.s . . . . . . 7 (𝜑 → ran 𝐹 = 𝐶)
32eqcomd 2744 . . . . . 6 (𝜑𝐶 = ran 𝐹)
43imaeq2d 5958 . . . . 5 (𝜑 → (𝐹𝐶) = (𝐹 “ ran 𝐹))
51, 4syl5eq 2791 . . . 4 (𝜑𝑃 = (𝐹 “ ran 𝐹))
6 cnvimarndm 5979 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
87fdmd 6595 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
96, 8syl5eq 2791 . . . 4 (𝜑 → (𝐹 “ ran 𝐹) = 𝐴)
105, 9eqtrd 2778 . . 3 (𝜑𝑃 = 𝐴)
11 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
12 simpr 484 . . . . . . 7 ((𝜑 ∧ ran 𝐹 = 𝐶) → ran 𝐹 = 𝐶)
1312ineq1d 4142 . . . . . 6 ((𝜑 ∧ ran 𝐹 = 𝐶) → (ran 𝐹𝐶) = (𝐶𝐶))
14 inidm 4149 . . . . . 6 (𝐶𝐶) = 𝐶
1513, 14eqtrdi 2795 . . . . 5 ((𝜑 ∧ ran 𝐹 = 𝐶) → (ran 𝐹𝐶) = 𝐶)
162, 15mpdan 683 . . . 4 (𝜑 → (ran 𝐹𝐶) = 𝐶)
1711, 16syl5eq 2791 . . 3 (𝜑𝐸 = 𝐶)
1810, 17jca 511 . 2 (𝜑 → (𝑃 = 𝐴𝐸 = 𝐶))
19 fcores.x . . . 4 𝑋 = (𝐹𝑃)
205, 6eqtrdi 2795 . . . . 5 (𝜑𝑃 = dom 𝐹)
2120reseq2d 5880 . . . 4 (𝜑 → (𝐹𝑃) = (𝐹 ↾ dom 𝐹))
2219, 21syl5eq 2791 . . 3 (𝜑𝑋 = (𝐹 ↾ dom 𝐹))
237freld 6590 . . . 4 (𝜑 → Rel 𝐹)
24 resdm 5925 . . . 4 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
2523, 24syl 17 . . 3 (𝜑 → (𝐹 ↾ dom 𝐹) = 𝐹)
2622, 25eqtrd 2778 . 2 (𝜑𝑋 = 𝐹)
27 fcores.y . . . 4 𝑌 = (𝐺𝐸)
28 fcores.g . . . . . . 7 (𝜑𝐺:𝐶𝐷)
2928fdmd 6595 . . . . . 6 (𝜑 → dom 𝐺 = 𝐶)
3017, 29eqtr4d 2781 . . . . 5 (𝜑𝐸 = dom 𝐺)
3130reseq2d 5880 . . . 4 (𝜑 → (𝐺𝐸) = (𝐺 ↾ dom 𝐺))
3227, 31syl5eq 2791 . . 3 (𝜑𝑌 = (𝐺 ↾ dom 𝐺))
3328freld 6590 . . . 4 (𝜑 → Rel 𝐺)
34 resdm 5925 . . . 4 (Rel 𝐺 → (𝐺 ↾ dom 𝐺) = 𝐺)
3533, 34syl 17 . . 3 (𝜑 → (𝐺 ↾ dom 𝐺) = 𝐺)
3632, 35eqtrd 2778 . 2 (𝜑𝑌 = 𝐺)
3718, 26, 36jca32 515 1 (𝜑 → ((𝑃 = 𝐴𝐸 = 𝐶) ∧ (𝑋 = 𝐹𝑌 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cin 3882  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Rel wrel 5585  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  f1cof1b  44456
  Copyright terms: Public domain W3C validator