MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbex Structured version   Visualization version   GIF version

Theorem hbex 2329
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by NM, 12-Mar-1993.) Reduce symbol count in nfex 2328, hbex 2329. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
hbex.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbex (∃𝑦𝜑 → ∀𝑥𝑦𝜑)

Proof of Theorem hbex
StepHypRef Expression
1 hbex.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21nf5i 2146 . . 3 𝑥𝜑
32nfex 2328 . 2 𝑥𝑦𝜑
43nf5ri 2196 1 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator