Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by NM, 12-Mar-1993.) Reduce symbol count in nfex 2318, hbex 2319. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
hbex.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbex | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbex.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nf5i 2142 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | 2 | nfex 2318 | . 2 ⊢ Ⅎ𝑥∃𝑦𝜑 |
4 | 3 | nf5ri 2188 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |