| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in Ⅎ𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfnf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfnf | ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1783 | . 2 ⊢ (Ⅎ𝑦𝜑 ↔ (∃𝑦𝜑 → ∀𝑦𝜑)) | |
| 2 | nfnf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| 4 | 2 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| 5 | 3, 4 | nfim 1895 | . 2 ⊢ Ⅎ𝑥(∃𝑦𝜑 → ∀𝑦𝜑) |
| 6 | 1, 5 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: nfnfc 2910 bj-nfcf 36870 |
| Copyright terms: Public domain | W3C validator |