MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf Structured version   Visualization version   GIF version

Theorem nfnf 2324
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfnf.1 𝑥𝜑
Assertion
Ref Expression
nfnf 𝑥𝑦𝜑

Proof of Theorem nfnf
StepHypRef Expression
1 df-nf 1788 . 2 (Ⅎ𝑦𝜑 ↔ (∃𝑦𝜑 → ∀𝑦𝜑))
2 nfnf.1 . . . 4 𝑥𝜑
32nfex 2322 . . 3 𝑥𝑦𝜑
42nfal 2321 . . 3 𝑥𝑦𝜑
53, 4nfim 1900 . 2 𝑥(∃𝑦𝜑 → ∀𝑦𝜑)
61, 5nfxfr 1856 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfnfc  2918  bj-nfcf  35038
  Copyright terms: Public domain W3C validator