Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbsb2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbsb2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4b 2489 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | sb2 2494 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
3 | 2 | axc4i 2331 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑) |
4 | 1, 3 | syl6bi 256 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: nfsb2 2502 |
Copyright terms: Public domain | W3C validator |