Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsb2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsb2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2151 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | hbsb2 2486 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | nf5d 2284 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: nfsb4t 2503 sbco3 2517 sb9 2523 wl-nfs1t 35623 |
Copyright terms: Public domain | W3C validator |