MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb2 Structured version   Visualization version   GIF version

Theorem nfsb2 2483
Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfsb2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem nfsb2
StepHypRef Expression
1 nfna1 2155 . 2 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 hbsb2 2482 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
31, 2nf5d 2286 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  nfsb4t  2499  sbco3  2513  sb9  2519  wl-nfs1t  37579
  Copyright terms: Public domain W3C validator