![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsb2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution. (Contributed by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
nfsb2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2196 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | hbsb2 2454 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | nf5d 2303 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1651 Ⅎwnf 1879 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-12 2213 ax-13 2354 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-nf 1880 df-sb 2065 |
This theorem is referenced by: nfsb4t 2489 sbco3 2528 sb9 2539 wl-nfs1t 33806 |
Copyright terms: Public domain | W3C validator |