MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb2e Structured version   Visualization version   GIF version

Theorem hbsb2e 2446
Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
hbsb2e ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)

Proof of Theorem hbsb2e
StepHypRef Expression
1 sb4e 2445 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
2 sb2 2424 . . 3 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑)
32axc4i 2262 . 2 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
41, 3syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1505  wex 1742  [wsb 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-12 2106  ax-13 2301
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-sb 2016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator