MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb2e Structured version   Visualization version   GIF version

Theorem hbsb2e 2490
Description: Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hbsb2e ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)

Proof of Theorem hbsb2e
StepHypRef Expression
1 sb4e 2489 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
2 sb2 2480 . . 3 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑)
32axc4i 2320 . 2 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
41, 3syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator