Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4e Structured version   Visualization version   GIF version

Theorem sb4e 2503
 Description: One direction of a simplified definition of substitution that unlike sb4b 2488 does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Assertion
Ref Expression
sb4e ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))

Proof of Theorem sb4e
StepHypRef Expression
1 sb1 2492 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 equs5e 2470 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
31, 2syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∀wal 1536  ∃wex 1781  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175  ax-13 2379 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  hbsb2e  2504
 Copyright terms: Public domain W3C validator