MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbv Structured version   Visualization version   GIF version

Theorem nfsbv 2330
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2528 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2377. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.)
Hypothesis
Ref Expression
nfsbv.nf 𝑧𝜑
Assertion
Ref Expression
nfsbv 𝑧[𝑦 / 𝑥]𝜑
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbv
StepHypRef Expression
1 nfsbv.nf . . . 4 𝑧𝜑
21nf5ri 2195 . . 3 (𝜑 → ∀𝑧𝜑)
32hbsbw 2171 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
43nf5i 2146 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  sbco2v  2332  2sb8ef  2359  sb8euv  2599  2mo  2648  cbvreuwOLD  3415  cbvrabwOLD  3474  cbvrabcsfw  3940  cbvopab1  5217  cbvmptf  5251  ralxpf  5857  cbviotaw  6521  cbvriotaw  7397  dfoprab4f  8081  mo5f  32508  ax11-pm2  36837  dfich2  47445  ichbi12i  47447
  Copyright terms: Public domain W3C validator