Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbv | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2527 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nf5ri 2191 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) |
3 | 2 | hbsbw 2171 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
4 | 3 | nf5i 2144 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: hbsbwOLD 2330 sbco2v 2331 2sb8ev 2354 sb8euv 2599 2mo 2650 nfcriiOLD 2899 cbvralfwOLD 3359 cbvreuw 3365 cbvrabw 3414 cbvrabcsfw 3872 cbvopab1 5145 cbvmptf 5179 ralxpf 5744 cbviotaw 6383 cbvriotaw 7221 dfoprab4f 7869 mo5f 30738 ax11-pm2 34946 dfich2 44798 ichbi12i 44800 |
Copyright terms: Public domain | W3C validator |