![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbv | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2531 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2380. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) |
3 | 2 | hbsbw 2172 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
4 | 3 | nf5i 2146 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbco2v 2336 2sb8ef 2362 sb8euv 2602 2mo 2651 cbvreuwOLD 3423 cbvrabwOLD 3482 cbvrabcsfw 3965 cbvopab1 5241 cbvmptf 5275 ralxpf 5871 cbviotaw 6532 cbvriotaw 7413 dfoprab4f 8097 mo5f 32517 ax11-pm2 36802 dfich2 47332 ichbi12i 47334 |
Copyright terms: Public domain | W3C validator |