![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbv | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2526 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2375. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nf5ri 2193 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) |
3 | 2 | hbsbw 2169 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
4 | 3 | nf5i 2144 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1780 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 df-sb 2063 |
This theorem is referenced by: sbco2v 2331 2sb8ef 2357 sb8euv 2597 2mo 2646 cbvreuwOLD 3413 cbvrabwOLD 3472 cbvrabcsfw 3952 cbvopab1 5223 cbvmptf 5257 ralxpf 5860 cbviotaw 6523 cbvriotaw 7397 dfoprab4f 8080 mo5f 32517 ax11-pm2 36819 dfich2 47383 ichbi12i 47385 |
Copyright terms: Public domain | W3C validator |