| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbv | Structured version Visualization version GIF version | ||
| Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2528 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2377. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nf5ri 2195 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) |
| 3 | 2 | hbsbw 2171 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| 4 | 3 | nf5i 2146 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbco2v 2332 2sb8ef 2359 sb8euv 2599 2mo 2648 cbvreuwOLD 3415 cbvrabwOLD 3474 cbvrabcsfw 3940 cbvopab1 5217 cbvmptf 5251 ralxpf 5857 cbviotaw 6521 cbvriotaw 7397 dfoprab4f 8081 mo5f 32508 ax11-pm2 36837 dfich2 47445 ichbi12i 47447 |
| Copyright terms: Public domain | W3C validator |