![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbv | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2522 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2371. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nf5ri 2188 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) |
3 | 2 | hbsbw 2169 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
4 | 3 | nf5i 2142 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-sb 2068 |
This theorem is referenced by: hbsbwOLD 2325 sbco2v 2326 2sb8ef 2352 sb8euv 2593 2mo 2644 nfcriiOLD 2896 cbvralfwOLD 3320 cbvreuwOLD 3412 cbvrabw 3467 cbvrabcsfw 3936 cbvopab1 5222 cbvmptf 5256 ralxpf 5844 cbviotaw 6499 cbvriotaw 7370 dfoprab4f 8038 mo5f 31716 ax11-pm2 35702 dfich2 46112 ichbi12i 46114 |
Copyright terms: Public domain | W3C validator |