Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbsbw | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. Version of hbsb 2530 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993.) (Revised by Gino Giotto, 23-May-2024.) |
Ref | Expression |
---|---|
hbsbw.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
hbsbw | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2071 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) | |
2 | hbsbw.1 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑧𝜑) | |
3 | 2 | imim2i 16 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 → 𝜑) → (𝑥 = 𝑤 → ∀𝑧𝜑)) |
4 | 3 | alimi 1817 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑤 → 𝜑) → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)) |
5 | 19.21v 1945 | . . . . . . . 8 ⊢ (∀𝑧(𝑥 = 𝑤 → 𝜑) ↔ (𝑥 = 𝑤 → ∀𝑧𝜑)) | |
6 | 5 | biimpri 227 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 → ∀𝑧𝜑) → ∀𝑧(𝑥 = 𝑤 → 𝜑)) |
7 | 6 | alimi 1817 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) → ∀𝑥∀𝑧(𝑥 = 𝑤 → 𝜑)) |
8 | ax-11 2157 | . . . . . 6 ⊢ (∀𝑥∀𝑧(𝑥 = 𝑤 → 𝜑) → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑)) | |
9 | 4, 7, 8 | 3syl 18 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑤 → 𝜑) → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑)) |
10 | 9 | imim2i 16 | . . . 4 ⊢ ((𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → (𝑤 = 𝑦 → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑))) |
11 | 19.21v 1945 | . . . 4 ⊢ (∀𝑧(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ (𝑤 = 𝑦 → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑))) | |
12 | 10, 11 | sylibr 233 | . . 3 ⊢ ((𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → ∀𝑧(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) |
13 | 12 | hbal 2170 | . 2 ⊢ (∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → ∀𝑧∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) |
14 | 1, 13 | hbxfrbi 1830 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-11 2157 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-sb 2071 |
This theorem is referenced by: nfsbv 2327 hbab 2727 hblem 2871 |
Copyright terms: Public domain | W3C validator |