MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsbw Structured version   Visualization version   GIF version

Theorem hbsbw 2171
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. Version of hbsb 2529 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993.) (Revised by GG, 23-May-2024.) (Proof shortened by Wolf Lammen, 14-May-2025.)
Hypothesis
Ref Expression
hbsbw.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsbw ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsbw
StepHypRef Expression
1 hbsbw.1 . . 3 (𝜑 → ∀𝑧𝜑)
21sbimi 2074 . 2 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑)
3 sbal 2169 . 2 ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧[𝑦 / 𝑥]𝜑)
42, 3sylib 218 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-11 2157
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-sb 2065
This theorem is referenced by:  nfsbv  2330  hbab  2725  hblem  2873
  Copyright terms: Public domain W3C validator