![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbco2v | Structured version Visualization version GIF version |
Description: Version of sbco2 2477 with disjoint variable conditions, not requiring ax-13 2301, but ax-11 2093. (Contributed by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
sbco2v.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2v.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbv 2270 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
3 | sbequ 2035 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sbiev 2253 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 Ⅎwnf 1746 [wsb 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-11 2093 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-sb 2016 |
This theorem is referenced by: ichbi12i 42986 |
Copyright terms: Public domain | W3C validator |