| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbco2v | Structured version Visualization version GIF version | ||
| Description: A composition law for substitution. Version of sbco2 2516 with disjoint variable conditions but not requiring ax-13 2377. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 29-Apr-2023.) |
| Ref | Expression |
|---|---|
| sbco2v.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2v.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsbv 2330 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| 3 | sbequ 2083 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 4 | 2, 3 | sbiev 2314 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: clelsb1fw 2909 ichbi12i 47447 |
| Copyright terms: Public domain | W3C validator |