MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2v Structured version   Visualization version   GIF version

Theorem sbco2v 2327
Description: A composition law for substitution. Version of sbco2 2515 with disjoint variable conditions but not requiring ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 29-Apr-2023.)
Hypothesis
Ref Expression
sbco2v.1 𝑧𝜑
Assertion
Ref Expression
sbco2v ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2v
StepHypRef Expression
1 sbco2v.1 . . 3 𝑧𝜑
21nfsbv 2324 . 2 𝑧[𝑦 / 𝑥]𝜑
3 sbequ 2086 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3sbiev 2309 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  cbvabwOLD  2813  clelsb1fw  2911  ichbi12i  44912
  Copyright terms: Public domain W3C validator