Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbco2v | Structured version Visualization version GIF version |
Description: A composition law for substitution. Version of sbco2 2515 with disjoint variable conditions but not requiring ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
sbco2v.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2v.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbv 2328 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
3 | sbequ 2087 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | sbiev 2312 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: cbvabwOLD 2814 clelsb1fw 2910 ichbi12i 44800 |
Copyright terms: Public domain | W3C validator |