| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ich2ex | Structured version Visualization version GIF version | ||
| Description: Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023.) |
| Ref | Expression |
|---|---|
| ich2ex | ⊢ [𝑥⇄𝑦]∃𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2153 | . 2 ⊢ Ⅎ𝑥∃𝑥∃𝑦𝜑 | |
| 2 | excom 2165 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 3 | nfe1 2153 | . . 3 ⊢ Ⅎ𝑦∃𝑦∃𝑥𝜑 | |
| 4 | 2, 3 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑦∃𝑥∃𝑦𝜑 |
| 5 | 1, 4 | ichf 47549 | 1 ⊢ [𝑥⇄𝑦]∃𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 [wich 47544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-sb 2068 df-ich 47545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |