Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ich2ex Structured version   Visualization version   GIF version

Theorem ich2ex 44872
Description: Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023.)
Assertion
Ref Expression
ich2ex [𝑥𝑦]∃𝑥𝑦𝜑

Proof of Theorem ich2ex
StepHypRef Expression
1 nfe1 2150 . 2 𝑥𝑥𝑦𝜑
2 excom 2165 . . 3 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 nfe1 2150 . . 3 𝑦𝑦𝑥𝜑
42, 3nfxfr 1858 . 2 𝑦𝑥𝑦𝜑
51, 4ichf 44854 1 [𝑥𝑦]∃𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wex 1785  [wich 44849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-nf 1790  df-sb 2071  df-ich 44850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator