Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichexmpl1 Structured version   Visualization version   GIF version

Theorem ichexmpl1 45165
Description: Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichexmpl1 [𝑎𝑏]∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐)
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem ichexmpl1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2026 . . . . . 6 (𝑎 = 𝑡 → (𝑎 = 𝑏𝑡 = 𝑏))
2 neeq1 3004 . . . . . 6 (𝑎 = 𝑡 → (𝑎𝑐𝑡𝑐))
31, 23anbi12d 1437 . . . . 5 (𝑎 = 𝑡 → ((𝑎 = 𝑏𝑎𝑐𝑏𝑐) ↔ (𝑡 = 𝑏𝑡𝑐𝑏𝑐)))
432exbidv 1925 . . . 4 (𝑎 = 𝑡 → (∃𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐) ↔ ∃𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐)))
54cbvexvw 2038 . . 3 (∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐) ↔ ∃𝑡𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐))
65a1i 11 . 2 (𝑎 = 𝑡 → (∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐) ↔ ∃𝑡𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐)))
7 equequ2 2027 . . . . . . 7 (𝑏 = 𝑎 → (𝑡 = 𝑏𝑡 = 𝑎))
8 neeq1 3004 . . . . . . 7 (𝑏 = 𝑎 → (𝑏𝑐𝑎𝑐))
97, 83anbi13d 1438 . . . . . 6 (𝑏 = 𝑎 → ((𝑡 = 𝑏𝑡𝑐𝑏𝑐) ↔ (𝑡 = 𝑎𝑡𝑐𝑎𝑐)))
109exbidv 1922 . . . . 5 (𝑏 = 𝑎 → (∃𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐) ↔ ∃𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐)))
1110cbvexvw 2038 . . . 4 (∃𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐) ↔ ∃𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐))
1211exbii 1848 . . 3 (∃𝑡𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐) ↔ ∃𝑡𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐))
1312a1i 11 . 2 (𝑏 = 𝑎 → (∃𝑡𝑏𝑐(𝑡 = 𝑏𝑡𝑐𝑏𝑐) ↔ ∃𝑡𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐)))
14 equequ1 2026 . . . . . . 7 (𝑡 = 𝑏 → (𝑡 = 𝑎𝑏 = 𝑎))
15 neeq1 3004 . . . . . . 7 (𝑡 = 𝑏 → (𝑡𝑐𝑏𝑐))
1614, 153anbi12d 1437 . . . . . 6 (𝑡 = 𝑏 → ((𝑡 = 𝑎𝑡𝑐𝑎𝑐) ↔ (𝑏 = 𝑎𝑏𝑐𝑎𝑐)))
17162exbidv 1925 . . . . 5 (𝑡 = 𝑏 → (∃𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐) ↔ ∃𝑎𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐)))
1817cbvexvw 2038 . . . 4 (∃𝑡𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐) ↔ ∃𝑏𝑎𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐))
19 excom 2160 . . . . 5 (∃𝑏𝑎𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐) ↔ ∃𝑎𝑏𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐))
20 3ancomb 1099 . . . . . . 7 ((𝑏 = 𝑎𝑏𝑐𝑎𝑐) ↔ (𝑏 = 𝑎𝑎𝑐𝑏𝑐))
21 equcom 2019 . . . . . . . 8 (𝑏 = 𝑎𝑎 = 𝑏)
22213anbi1i 1157 . . . . . . 7 ((𝑏 = 𝑎𝑎𝑐𝑏𝑐) ↔ (𝑎 = 𝑏𝑎𝑐𝑏𝑐))
2320, 22bitri 275 . . . . . 6 ((𝑏 = 𝑎𝑏𝑐𝑎𝑐) ↔ (𝑎 = 𝑏𝑎𝑐𝑏𝑐))
24233exbii 1850 . . . . 5 (∃𝑎𝑏𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐) ↔ ∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐))
2519, 24bitri 275 . . . 4 (∃𝑏𝑎𝑐(𝑏 = 𝑎𝑏𝑐𝑎𝑐) ↔ ∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐))
2618, 25bitri 275 . . 3 (∃𝑡𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐) ↔ ∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐))
2726a1i 11 . 2 (𝑡 = 𝑏 → (∃𝑡𝑎𝑐(𝑡 = 𝑎𝑡𝑐𝑎𝑐) ↔ ∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐)))
286, 13, 27ichcircshi 45150 1 [𝑎𝑏]∃𝑎𝑏𝑐(𝑎 = 𝑏𝑎𝑐𝑏𝑐)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1087  wex 1779  wne 2941  [wich 45141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-11 2152  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-ex 1780  df-sb 2066  df-cleq 2728  df-ne 2942  df-ich 45142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator