Proof of Theorem ichnfimlem
| Step | Hyp | Ref
| Expression |
| 1 | | nfa1 2151 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦Ⅎ𝑥𝜑 |
| 2 | | sb6 2085 |
. . . . . . . . . 10
⊢ ([𝑏 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑏 → 𝜑)) |
| 3 | 2 | a1i 11 |
. . . . . . . . 9
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑏 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑏 → 𝜑))) |
| 4 | 2 | biimpri 228 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 = 𝑏 → 𝜑) → [𝑏 / 𝑦]𝜑) |
| 5 | 4 | axc4i 2322 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑏 → 𝜑) → ∀𝑦[𝑏 / 𝑦]𝜑) |
| 6 | 3, 5 | biimtrdi 253 |
. . . . . . . 8
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑏 / 𝑦]𝜑 → ∀𝑦[𝑏 / 𝑦]𝜑)) |
| 7 | 1, 6 | nf5d 2284 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑦[𝑏 / 𝑦]𝜑) |
| 8 | 1, 7 | nfim1 2199 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) |
| 9 | | sbequ12 2251 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
| 10 | 9 | imbi2d 340 |
. . . . . 6
⊢ (𝑦 = 𝑏 → ((∀𝑦Ⅎ𝑥𝜑 → 𝜑) ↔ (∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑))) |
| 11 | 8, 10 | equsalv 2267 |
. . . . 5
⊢
(∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) ↔ (∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑)) |
| 12 | 11 | bicomi 224 |
. . . 4
⊢
((∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ ∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑))) |
| 13 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 = 𝑏 |
| 14 | | nfnf1 2154 |
. . . . . . . 8
⊢
Ⅎ𝑥Ⅎ𝑥𝜑 |
| 15 | 14 | nfal 2323 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦Ⅎ𝑥𝜑 |
| 16 | | sp 2183 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) |
| 17 | 15, 16 | nfim1 2199 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → 𝜑) |
| 18 | 13, 17 | nfim 1896 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) |
| 19 | 18 | nfal 2323 |
. . . 4
⊢
Ⅎ𝑥∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) |
| 20 | 12, 19 | nfxfr 1853 |
. . 3
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) |
| 21 | | pm5.5 361 |
. . . 4
⊢
(∀𝑦Ⅎ𝑥𝜑 → ((∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ [𝑏 / 𝑦]𝜑)) |
| 22 | 15, 21 | nfbidf 2224 |
. . 3
⊢
(∀𝑦Ⅎ𝑥𝜑 → (Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ Ⅎ𝑥[𝑏 / 𝑦]𝜑)) |
| 23 | 20, 22 | mpbii 233 |
. 2
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥[𝑏 / 𝑦]𝜑) |
| 24 | | sbft 2270 |
. 2
⊢
(Ⅎ𝑥[𝑏 / 𝑦]𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
| 25 | 23, 24 | syl 17 |
1
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |