Proof of Theorem ichnfimlem
Step | Hyp | Ref
| Expression |
1 | | nfa1 2148 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦Ⅎ𝑥𝜑 |
2 | | sb6 2088 |
. . . . . . . . . 10
⊢ ([𝑏 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑏 → 𝜑)) |
3 | 2 | a1i 11 |
. . . . . . . . 9
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑏 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑏 → 𝜑))) |
4 | 2 | biimpri 227 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 = 𝑏 → 𝜑) → [𝑏 / 𝑦]𝜑) |
5 | 4 | axc4i 2316 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑏 → 𝜑) → ∀𝑦[𝑏 / 𝑦]𝜑) |
6 | 3, 5 | syl6bi 252 |
. . . . . . . 8
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑏 / 𝑦]𝜑 → ∀𝑦[𝑏 / 𝑦]𝜑)) |
7 | 1, 6 | nf5d 2281 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑦[𝑏 / 𝑦]𝜑) |
8 | 1, 7 | nfim1 2192 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) |
9 | | sbequ12 2244 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
10 | 9 | imbi2d 341 |
. . . . . 6
⊢ (𝑦 = 𝑏 → ((∀𝑦Ⅎ𝑥𝜑 → 𝜑) ↔ (∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑))) |
11 | 8, 10 | equsalv 2259 |
. . . . 5
⊢
(∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) ↔ (∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑)) |
12 | 11 | bicomi 223 |
. . . 4
⊢
((∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ ∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑))) |
13 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 = 𝑏 |
14 | | nfnf1 2151 |
. . . . . . . 8
⊢
Ⅎ𝑥Ⅎ𝑥𝜑 |
15 | 14 | nfal 2317 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦Ⅎ𝑥𝜑 |
16 | | sp 2176 |
. . . . . . 7
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) |
17 | 15, 16 | nfim1 2192 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → 𝜑) |
18 | 13, 17 | nfim 1899 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) |
19 | 18 | nfal 2317 |
. . . 4
⊢
Ⅎ𝑥∀𝑦(𝑦 = 𝑏 → (∀𝑦Ⅎ𝑥𝜑 → 𝜑)) |
20 | 12, 19 | nfxfr 1855 |
. . 3
⊢
Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) |
21 | | pm5.5 362 |
. . . 4
⊢
(∀𝑦Ⅎ𝑥𝜑 → ((∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ [𝑏 / 𝑦]𝜑)) |
22 | 15, 21 | nfbidf 2217 |
. . 3
⊢
(∀𝑦Ⅎ𝑥𝜑 → (Ⅎ𝑥(∀𝑦Ⅎ𝑥𝜑 → [𝑏 / 𝑦]𝜑) ↔ Ⅎ𝑥[𝑏 / 𝑦]𝜑)) |
23 | 20, 22 | mpbii 232 |
. 2
⊢
(∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥[𝑏 / 𝑦]𝜑) |
24 | | sbft 2262 |
. 2
⊢
(Ⅎ𝑥[𝑏 / 𝑦]𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
25 | 23, 24 | syl 17 |
1
⊢
(∀𝑦Ⅎ𝑥𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |