| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichnfb | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are interchangeable in 𝜑, they are both free or both not free in 𝜑. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| Ref | Expression |
|---|---|
| ichnfb | ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑦Ⅎ𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ichcom 47446 | . . . 4 ⊢ ([𝑥⇄𝑦]𝜑 ↔ [𝑦⇄𝑥]𝜑) | |
| 2 | ichnfim 47451 | . . . 4 ⊢ ((∀𝑥Ⅎ𝑦𝜑 ∧ [𝑦⇄𝑥]𝜑) → ∀𝑦Ⅎ𝑥𝜑) | |
| 3 | 1, 2 | sylan2b 594 | . . 3 ⊢ ((∀𝑥Ⅎ𝑦𝜑 ∧ [𝑥⇄𝑦]𝜑) → ∀𝑦Ⅎ𝑥𝜑) |
| 4 | 3 | expcom 413 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 → ∀𝑦Ⅎ𝑥𝜑)) |
| 5 | ichnfim 47451 | . . 3 ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ [𝑥⇄𝑦]𝜑) → ∀𝑥Ⅎ𝑦𝜑) | |
| 6 | 5 | expcom 413 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥Ⅎ𝑦𝜑)) |
| 7 | 4, 6 | impbid 212 | 1 ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑦Ⅎ𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wich 47432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-ich 47433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |