Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichcom | Structured version Visualization version GIF version |
Description: The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.) |
Ref | Expression |
---|---|
ichcom | ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2156 | . . 3 ⊢ (∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓)) | |
2 | sbcom2 2161 | . . . . 5 ⊢ ([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑦][𝑏 / 𝑥]𝜓) | |
3 | sbcom2 2161 | . . . . 5 ⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | |
4 | 2, 3 | bibi12i 340 | . . . 4 ⊢ (([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
5 | 4 | 2albii 1823 | . . 3 ⊢ (∀𝑎∀𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
6 | 1, 5 | bitri 274 | . 2 ⊢ (∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
7 | dfich2 44910 | . 2 ⊢ ([𝑥⇄𝑦]𝜓 ↔ ∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓)) | |
8 | dfich2 44910 | . 2 ⊢ ([𝑦⇄𝑥]𝜓 ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 [wsb 2067 [wich 44897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-ich 44898 |
This theorem is referenced by: ichnfb 44917 ich2exprop 44923 |
Copyright terms: Public domain | W3C validator |