Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichcom Structured version   Visualization version   GIF version

Theorem ichcom 44911
Description: The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.)
Assertion
Ref Expression
ichcom ([𝑥𝑦]𝜓 ↔ [𝑦𝑥]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem ichcom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alcom 2156 . . 3 (∀𝑏𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓))
2 sbcom2 2161 . . . . 5 ([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑦][𝑏 / 𝑥]𝜓)
3 sbcom2 2161 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)
42, 3bibi12i 340 . . . 4 (([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓))
542albii 1823 . . 3 (∀𝑎𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓))
61, 5bitri 274 . 2 (∀𝑏𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓))
7 dfich2 44910 . 2 ([𝑥𝑦]𝜓 ↔ ∀𝑏𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓))
8 dfich2 44910 . 2 ([𝑦𝑥]𝜓 ↔ ∀𝑎𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓))
96, 7, 83bitr4i 303 1 ([𝑥𝑦]𝜓 ↔ [𝑦𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  [wsb 2067  [wich 44897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-ich 44898
This theorem is referenced by:  ichnfb  44917  ich2exprop  44923
  Copyright terms: Public domain W3C validator