![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichcom | Structured version Visualization version GIF version |
Description: The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.) |
Ref | Expression |
---|---|
ichcom | ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2160 | . . 3 ⊢ (∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓)) | |
2 | sbcom2 2174 | . . . . 5 ⊢ ([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑦][𝑏 / 𝑥]𝜓) | |
3 | sbcom2 2174 | . . . . 5 ⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | |
4 | 2, 3 | bibi12i 339 | . . . 4 ⊢ (([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
5 | 4 | 2albii 1818 | . . 3 ⊢ (∀𝑎∀𝑏([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
6 | 1, 5 | bitri 275 | . 2 ⊢ (∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) |
7 | dfich2 47332 | . 2 ⊢ ([𝑥⇄𝑦]𝜓 ↔ ∀𝑏∀𝑎([𝑏 / 𝑥][𝑎 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓)) | |
8 | dfich2 47332 | . 2 ⊢ ([𝑦⇄𝑥]𝜓 ↔ ∀𝑎∀𝑏([𝑎 / 𝑦][𝑏 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 [wsb 2064 [wich 47319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-ich 47320 |
This theorem is referenced by: ichnfb 47339 ich2exprop 47345 |
Copyright terms: Public domain | W3C validator |