MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpbi23d Structured version   Visualization version   GIF version

Theorem ifpbi23d 1078
Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024.)
Hypotheses
Ref Expression
ifpbi23d.1 (𝜑 → (𝜒𝜂))
ifpbi23d.2 (𝜑 → (𝜃𝜁))
Assertion
Ref Expression
ifpbi23d (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁)))

Proof of Theorem ifpbi23d
StepHypRef Expression
1 biidd 261 . 2 (𝜑 → (𝜓𝜓))
2 ifpbi23d.1 . 2 (𝜑 → (𝜒𝜂))
3 ifpbi23d.2 . 2 (𝜑 → (𝜃𝜁))
41, 2, 3ifpbi123d 1076 1 (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  wksfval  27879  subgrwlk  32994  satfv1fvfmla1  33285  bj-ififc  34690  wl-df-3xor  35566  wl-df3maxtru1  35590
  Copyright terms: Public domain W3C validator