| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpbi23d | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024.) |
| Ref | Expression |
|---|---|
| ifpbi23d.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜂)) |
| ifpbi23d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| ifpbi23d | ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) | |
| 2 | ifpbi23d.1 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜂)) | |
| 3 | ifpbi23d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜁)) | |
| 4 | 1, 2, 3 | ifpbi123d 1078 | 1 ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: wksfval 29594 subgrwlk 35159 satfv1fvfmla1 35450 bj-ififc 36605 wl-df-3xor 37491 wl-df3maxtru1 37515 ifpbi23 43464 |
| Copyright terms: Public domain | W3C validator |