Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpbi23d | Structured version Visualization version GIF version |
Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024.) |
Ref | Expression |
---|---|
ifpbi23d.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜂)) |
ifpbi23d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜁)) |
Ref | Expression |
---|---|
ifpbi23d | ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) | |
2 | ifpbi23d.1 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜂)) | |
3 | ifpbi23d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜁)) | |
4 | 1, 2, 3 | ifpbi123d 1077 | 1 ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜓, 𝜂, 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: wksfval 27976 subgrwlk 33094 satfv1fvfmla1 33385 bj-ififc 34763 wl-df-3xor 35639 wl-df3maxtru1 35663 |
Copyright terms: Public domain | W3C validator |