| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4283 axnulALT 5237 axnul 5238 cnv0 6082 imadif 6560 poxp3 8075 1div0 11771 xrltnr 13013 nltmnf 13023 0nelfz1 13438 smu01 16392 3lcm2e6woprm 16521 6lcm4e12 16522 join0 18304 meet0 18305 nsmndex1 18816 smndex2dnrinv 18818 zringndrg 21400 zclmncvs 25070 nolt02o 27629 nogt01o 27630 legso 28572 rgrx0ndm 29567 wwlksnext 29866 ntrl2v2e 30130 avril1 30435 helloworld 30437 topnfbey 30441 xrge00 32987 axsepg2ALT 35087 fmlaomn0 35426 gonan0 35428 goaln0 35429 prv0 35466 dfon2lem7 35823 nandsym1 36456 bj-inftyexpitaudisj 37239 padd01 39850 ifpdfan 43499 sucomisnotcard 43577 clsk1indlem4 44077 iblempty 46003 salexct2 46377 0nodd 48201 2nodd 48203 1neven 48269 ipolub00 49024 |
| Copyright terms: Public domain | W3C validator |