| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4297 axnulALT 5254 axnul 5255 cnv0 6101 imadif 6584 poxp3 8106 1div0 11813 xrltnr 13055 nltmnf 13065 0nelfz1 13480 smu01 16432 3lcm2e6woprm 16561 6lcm4e12 16562 join0 18340 meet0 18341 nsmndex1 18816 smndex2dnrinv 18818 zringndrg 21354 zclmncvs 25024 nolt02o 27583 nogt01o 27584 legso 28502 rgrx0ndm 29497 wwlksnext 29796 ntrl2v2e 30060 avril1 30365 helloworld 30367 topnfbey 30371 xrge00 32926 axsepg2ALT 35046 fmlaomn0 35350 gonan0 35352 goaln0 35353 prv0 35390 dfon2lem7 35750 nandsym1 36383 bj-inftyexpitaudisj 37166 padd01 39778 ifpdfan 43428 sucomisnotcard 43506 clsk1indlem4 44006 iblempty 45936 salexct2 46310 0nodd 48131 2nodd 48133 1neven 48199 ipolub00 48954 |
| Copyright terms: Public domain | W3C validator |