![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bianfi 533 noel 4344 axnulALT 5310 axnul 5311 cnv0 6163 imadif 6652 poxp3 8174 1div0 11920 xrltnr 13159 nltmnf 13169 0nelfz1 13580 smu01 16520 3lcm2e6woprm 16649 6lcm4e12 16650 join0 18463 meet0 18464 nsmndex1 18939 smndex2dnrinv 18941 zringndrg 21497 zclmncvs 25196 nolt02o 27755 nogt01o 27756 legso 28622 rgrx0ndm 29626 wwlksnext 29923 ntrl2v2e 30187 avril1 30492 helloworld 30494 topnfbey 30498 xrge00 33000 axsepg2ALT 35076 fmlaomn0 35375 gonan0 35377 goaln0 35378 prv0 35415 dfon2lem7 35771 nandsym1 36405 bj-inftyexpitaudisj 37188 padd01 39794 ifpdfan 43456 sucomisnotcard 43534 clsk1indlem4 44034 iblempty 45921 salexct2 46295 0nodd 48014 2nodd 48016 1neven 48082 ipolub00 48782 |
Copyright terms: Public domain | W3C validator |