| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4287 uni0 4888 axnulALT 5246 axnul 5247 cnv0 6094 cnv0OLD 6095 imadif 6573 poxp3 8089 1div0 11787 xrltnr 13024 nltmnf 13034 0nelfz1 13450 smu01 16404 3lcm2e6woprm 16533 6lcm4e12 16534 join0 18317 meet0 18318 nsmndex1 18829 smndex2dnrinv 18831 zringndrg 21414 zclmncvs 25095 nolt02o 27654 nogt01o 27655 legso 28597 rgrx0ndm 29593 wwlksnext 29892 ntrl2v2e 30159 avril1 30464 helloworld 30466 topnfbey 30470 xrge00 33024 axsepg2ALT 35167 fmlaomn0 35506 gonan0 35508 goaln0 35509 prv0 35546 dfon2lem7 35903 nandsym1 36538 bj-inftyexpitaudisj 37322 padd01 39983 ifpdfan 43623 sucomisnotcard 43701 clsk1indlem4 44201 iblempty 46125 salexct2 46499 0nodd 48332 2nodd 48334 1neven 48400 ipolub00 49154 |
| Copyright terms: Public domain | W3C validator |