Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bianfi 533 indifdirOLD 4216 noel 4261 noelOLD 4262 dfopif 4797 axnulALT 5223 axnul 5224 cnv0 6033 imadif 6502 xrltnr 12784 nltmnf 12794 0nelfz1 13204 smu01 16121 3lcm2e6woprm 16248 6lcm4e12 16249 join0 18038 meet0 18039 nsmndex1 18467 smndex2dnrinv 18469 zringndrg 20602 zclmncvs 24217 legso 26864 rgrx0ndm 27863 wwlksnext 28159 ntrl2v2e 28423 avril1 28728 helloworld 28730 topnfbey 28734 xrge00 31197 fmlaomn0 33252 gonan0 33254 goaln0 33255 prv0 33292 dfon2lem7 33671 poxp3 33723 nolt02o 33825 nogt01o 33826 nandsym1 34538 subsym1 34543 bj-inftyexpitaudisj 35303 padd01 37752 ifpdfan 40971 clsk1indlem4 41543 iblempty 43396 salexct2 43768 0nodd 45252 2nodd 45254 1neven 45378 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |