| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4291 axnulALT 5246 axnul 5247 cnv0 6093 imadif 6570 poxp3 8090 1div0 11798 xrltnr 13040 nltmnf 13050 0nelfz1 13465 smu01 16416 3lcm2e6woprm 16545 6lcm4e12 16546 join0 18328 meet0 18329 nsmndex1 18806 smndex2dnrinv 18808 zringndrg 21394 zclmncvs 25065 nolt02o 27624 nogt01o 27625 legso 28563 rgrx0ndm 29558 wwlksnext 29857 ntrl2v2e 30121 avril1 30426 helloworld 30428 topnfbey 30432 xrge00 32987 axsepg2ALT 35069 fmlaomn0 35382 gonan0 35384 goaln0 35385 prv0 35422 dfon2lem7 35782 nandsym1 36415 bj-inftyexpitaudisj 37198 padd01 39810 ifpdfan 43459 sucomisnotcard 43537 clsk1indlem4 44037 iblempty 45966 salexct2 46340 0nodd 48174 2nodd 48176 1neven 48242 ipolub00 48997 |
| Copyright terms: Public domain | W3C validator |