| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4318 axnulALT 5279 axnul 5280 cnv0 6134 imadif 6625 poxp3 8154 1div0 11901 xrltnr 13140 nltmnf 13150 0nelfz1 13565 smu01 16510 3lcm2e6woprm 16639 6lcm4e12 16640 join0 18420 meet0 18421 nsmndex1 18896 smndex2dnrinv 18898 zringndrg 21434 zclmncvs 25105 nolt02o 27664 nogt01o 27665 legso 28583 rgrx0ndm 29578 wwlksnext 29880 ntrl2v2e 30144 avril1 30449 helloworld 30451 topnfbey 30455 xrge00 33012 axsepg2ALT 35119 fmlaomn0 35417 gonan0 35419 goaln0 35420 prv0 35457 dfon2lem7 35812 nandsym1 36445 bj-inftyexpitaudisj 37228 padd01 39835 ifpdfan 43457 sucomisnotcard 43535 clsk1indlem4 44035 iblempty 45961 salexct2 46335 0nodd 48112 2nodd 48114 1neven 48180 ipolub00 48934 |
| Copyright terms: Public domain | W3C validator |