| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4304 axnulALT 5262 axnul 5263 cnv0 6116 imadif 6603 poxp3 8132 1div0 11844 xrltnr 13086 nltmnf 13096 0nelfz1 13511 smu01 16463 3lcm2e6woprm 16592 6lcm4e12 16593 join0 18371 meet0 18372 nsmndex1 18847 smndex2dnrinv 18849 zringndrg 21385 zclmncvs 25055 nolt02o 27614 nogt01o 27615 legso 28533 rgrx0ndm 29528 wwlksnext 29830 ntrl2v2e 30094 avril1 30399 helloworld 30401 topnfbey 30405 xrge00 32960 axsepg2ALT 35080 fmlaomn0 35384 gonan0 35386 goaln0 35387 prv0 35424 dfon2lem7 35784 nandsym1 36417 bj-inftyexpitaudisj 37200 padd01 39812 ifpdfan 43462 sucomisnotcard 43540 clsk1indlem4 44040 iblempty 45970 salexct2 46344 0nodd 48162 2nodd 48164 1neven 48230 ipolub00 48985 |
| Copyright terms: Public domain | W3C validator |