| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianfi 533 noel 4301 axnulALT 5259 axnul 5260 cnv0 6113 imadif 6600 poxp3 8129 1div0 11837 xrltnr 13079 nltmnf 13089 0nelfz1 13504 smu01 16456 3lcm2e6woprm 16585 6lcm4e12 16586 join0 18364 meet0 18365 nsmndex1 18840 smndex2dnrinv 18842 zringndrg 21378 zclmncvs 25048 nolt02o 27607 nogt01o 27608 legso 28526 rgrx0ndm 29521 wwlksnext 29823 ntrl2v2e 30087 avril1 30392 helloworld 30394 topnfbey 30398 xrge00 32953 axsepg2ALT 35073 fmlaomn0 35377 gonan0 35379 goaln0 35380 prv0 35417 dfon2lem7 35777 nandsym1 36410 bj-inftyexpitaudisj 37193 padd01 39805 ifpdfan 43455 sucomisnotcard 43533 clsk1indlem4 44033 iblempty 45963 salexct2 46337 0nodd 48158 2nodd 48160 1neven 48226 ipolub00 48981 |
| Copyright terms: Public domain | W3C validator |