![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnan | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpr 484 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bianfi 533 noel 4360 noelOLD 4361 axnulALT 5322 axnul 5323 cnv0 6172 imadif 6662 poxp3 8191 1div0 11949 xrltnr 13182 nltmnf 13192 0nelfz1 13603 smu01 16532 3lcm2e6woprm 16662 6lcm4e12 16663 join0 18475 meet0 18476 nsmndex1 18948 smndex2dnrinv 18950 zringndrg 21502 zclmncvs 25201 nolt02o 27758 nogt01o 27759 legso 28625 rgrx0ndm 29629 wwlksnext 29926 ntrl2v2e 30190 avril1 30495 helloworld 30497 topnfbey 30501 xrge00 32998 axsepg2ALT 35059 fmlaomn0 35358 gonan0 35360 goaln0 35361 prv0 35398 dfon2lem7 35753 nandsym1 36388 bj-inftyexpitaudisj 37171 padd01 39768 ifpdfan 43428 sucomisnotcard 43506 clsk1indlem4 44006 iblempty 45886 salexct2 46260 0nodd 47893 2nodd 47895 1neven 47961 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |