Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpid2 Structured version   Visualization version   GIF version

Theorem ifpid2 38765
Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpid2 (𝜑 ↔ if-(𝜑, ⊤, ⊥))

Proof of Theorem ifpid2
StepHypRef Expression
1 tru 1606 . . . 4
21olci 855 . . 3 𝜑 ∨ ⊤)
32biantrur 526 . 2 ((𝜑 ∨ ⊥) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑 ∨ ⊥)))
4 fal 1616 . . 3 ¬ ⊥
54biorfi 925 . 2 (𝜑 ↔ (𝜑 ∨ ⊥))
6 dfifp4 1050 . 2 (if-(𝜑, ⊤, ⊥) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑 ∨ ⊥)))
73, 5, 63bitr4i 295 1 (𝜑 ↔ if-(𝜑, ⊤, ⊥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 386  wo 836  if-wif 1046  wtru 1602  wfal 1614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ifp 1047  df-tru 1605  df-fal 1615
This theorem is referenced by:  frege52aid  39100
  Copyright terms: Public domain W3C validator