| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpid2 | Structured version Visualization version GIF version | ||
| Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpid2 | ⊢ (𝜑 ↔ if-(𝜑, ⊤, ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . . 4 ⊢ ⊤ | |
| 2 | 1 | olci 867 | . . 3 ⊢ (¬ 𝜑 ∨ ⊤) |
| 3 | 2 | biantrur 530 | . 2 ⊢ ((𝜑 ∨ ⊥) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑 ∨ ⊥))) |
| 4 | fal 1554 | . . 3 ⊢ ¬ ⊥ | |
| 5 | 4 | biorfri 940 | . 2 ⊢ (𝜑 ↔ (𝜑 ∨ ⊥)) |
| 6 | dfifp4 1067 | . 2 ⊢ (if-(𝜑, ⊤, ⊥) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑 ∨ ⊥))) | |
| 7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝜑 ↔ if-(𝜑, ⊤, ⊥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 ⊤wtru 1541 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: frege52aid 43871 |
| Copyright terms: Public domain | W3C validator |