|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > im2anan9r | Structured version Visualization version GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) | 
| Ref | Expression | 
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) | 
| Ref | Expression | 
|---|---|
| im2anan9r | ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 3 | 1, 2 | im2anan9 620 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: pssnn 9208 lbreu 12218 catideu 17718 exidu1 37863 rngoideu 37910 isubgr3stgrlem6 47938 | 
| Copyright terms: Public domain | W3C validator |