Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > im2anan9r | Structured version Visualization version GIF version |
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
im2anan9r | ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
3 | 1, 2 | im2anan9 623 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
4 | 3 | ancoms 462 | 1 ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: pssnn 8872 pssnnOLD 8925 lbreu 11812 catideu 17211 exidu1 35788 rngoideu 35835 |
Copyright terms: Public domain | W3C validator |