| Step | Hyp | Ref
| Expression |
| 1 | | pssss 4078 |
. . . 4
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) |
| 2 | | ssexg 5298 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ω) → 𝐵 ∈ V) |
| 3 | 1, 2 | sylan 580 |
. . 3
⊢ ((𝐵 ⊊ 𝐴 ∧ 𝐴 ∈ ω) → 𝐵 ∈ V) |
| 4 | 3 | ancoms 458 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
| 5 | | psseq2 4071 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ∅)) |
| 6 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥)) |
| 7 | 5, 6 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = ∅ → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ ∅ → ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥))) |
| 8 | 7 | albidv 1920 |
. . . . . 6
⊢ (𝑧 = ∅ → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ ∅ → ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥))) |
| 9 | | psseq2 4071 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝑦)) |
| 10 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) |
| 11 | 9, 10 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥))) |
| 12 | 11 | albidv 1920 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥))) |
| 13 | | psseq2 4071 |
. . . . . . . 8
⊢ (𝑧 = suc 𝑦 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ suc 𝑦)) |
| 14 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑧 = suc 𝑦 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 15 | 13, 14 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 16 | 15 | albidv 1920 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 17 | | psseq2 4071 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝐴)) |
| 18 | | rexeq 3305 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥)) |
| 19 | 17, 18 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥))) |
| 20 | 19 | albidv 1920 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥))) |
| 21 | | npss0 4428 |
. . . . . . . 8
⊢ ¬
𝑤 ⊊
∅ |
| 22 | 21 | pm2.21i 119 |
. . . . . . 7
⊢ (𝑤 ⊊ ∅ →
∃𝑥 ∈ ∅
𝑤 ≈ 𝑥) |
| 23 | 22 | ax-gen 1795 |
. . . . . 6
⊢
∀𝑤(𝑤 ⊊ ∅ →
∃𝑥 ∈ ∅
𝑤 ≈ 𝑥) |
| 24 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑦 ∈ ω |
| 25 | | nfa1 2152 |
. . . . . . 7
⊢
Ⅎ𝑤∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) |
| 26 | | elequ1 2116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
| 27 | 26 | biimpcd 249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑤 → (𝑧 = 𝑦 → 𝑦 ∈ 𝑤)) |
| 28 | 27 | con3d 152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑤 → (¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦)) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦)) |
| 30 | | pssss 4078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ⊊ suc 𝑦 → 𝑤 ⊆ suc 𝑦) |
| 31 | 30 | sseld 3962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ⊊ suc 𝑦 → (𝑧 ∈ 𝑤 → 𝑧 ∈ suc 𝑦)) |
| 32 | | elsuci 6426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ suc 𝑦 → (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦)) |
| 33 | 32 | ord 864 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ suc 𝑦 → (¬ 𝑧 ∈ 𝑦 → 𝑧 = 𝑦)) |
| 34 | 33 | con1d 145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ suc 𝑦 → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦)) |
| 35 | 31, 34 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ⊊ suc 𝑦 → (𝑧 ∈ 𝑤 → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦))) |
| 36 | 35 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦)) |
| 37 | 29, 36 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑦 ∈ 𝑤 → 𝑧 ∈ 𝑦)) |
| 38 | 37 | impancom 451 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) → (𝑧 ∈ 𝑤 → 𝑧 ∈ 𝑦)) |
| 39 | 38 | ssrdv 3969 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) → 𝑤 ⊆ 𝑦) |
| 40 | 39 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → (𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦)) |
| 41 | | dfpss2 4068 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ⊊ 𝑦 ↔ (𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦)) |
| 42 | 40, 41 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → 𝑤 ⊊ 𝑦) |
| 43 | | elelsuc 6432 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ suc 𝑦) |
| 44 | 43 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑤 ≈ 𝑥) → (𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑥)) |
| 45 | 44 | reximi2 3070 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝑦 𝑤 ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 46 | 42, 45 | imim12i 62 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 47 | 46 | exp4c 432 |
. . . . . . . . . . . 12
⊢ ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 48 | 47 | sps 2186 |
. . . . . . . . . . 11
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 49 | 48 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 50 | 49 | com4t 93 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 51 | | anidm 564 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦) ↔ 𝑤 ⊊ suc 𝑦) |
| 52 | | ssdif 4124 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ⊆ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ (suc 𝑦 ∖ {𝑦})) |
| 53 | | nnord 7874 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω → Ord 𝑦) |
| 54 | | orddif 6455 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑦 → 𝑦 = (suc 𝑦 ∖ {𝑦})) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω → 𝑦 = (suc 𝑦 ∖ {𝑦})) |
| 56 | 55 | sseq2d 3996 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ↔ (𝑤 ∖ {𝑦}) ⊆ (suc 𝑦 ∖ {𝑦}))) |
| 57 | 52, 56 | imbitrrid 246 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ω → (𝑤 ⊆ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ 𝑦)) |
| 58 | 30, 57 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ω → (𝑤 ⊊ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ 𝑦)) |
| 59 | | pssnel 4451 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ⊊ suc 𝑦 → ∃𝑧(𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤)) |
| 60 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∖ {𝑦}) = 𝑦 → (𝑧 ∈ (𝑤 ∖ {𝑦}) ↔ 𝑧 ∈ 𝑦)) |
| 61 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ (𝑤 ∖ {𝑦}) → 𝑧 ∈ 𝑤) |
| 62 | 60, 61 | biimtrrdi 254 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∖ {𝑦}) = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 64 | | eleq1a 2830 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝑤 → (𝑧 = 𝑦 → 𝑧 ∈ 𝑤)) |
| 65 | 33, 64 | sylan9r 508 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → (¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → (¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 67 | 63, 66 | pm2.61d 179 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → 𝑧 ∈ 𝑤) |
| 68 | 67 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → ((𝑤 ∖ {𝑦}) = 𝑦 → 𝑧 ∈ 𝑤)) |
| 69 | 68 | con3d 152 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → (¬ 𝑧 ∈ 𝑤 → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 70 | 69 | expimpd 453 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤) → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 71 | 70 | exlimdv 1933 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑤 → (∃𝑧(𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤) → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 72 | 59, 71 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑤 → (𝑤 ⊊ suc 𝑦 → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 73 | 58, 72 | im2anan9r 621 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦) → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦))) |
| 74 | 51, 73 | biimtrrid 243 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑤 ⊊ suc 𝑦 → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦))) |
| 75 | | dfpss2 4068 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∖ {𝑦}) ⊊ 𝑦 ↔ ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 76 | 74, 75 | imbitrrdi 252 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑤 ⊊ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊊ 𝑦)) |
| 77 | | psseq1 4070 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (𝑤 ⊊ 𝑦 ↔ 𝑧 ⊊ 𝑦)) |
| 78 | | breq1 5127 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → (𝑤 ≈ 𝑥 ↔ 𝑧 ≈ 𝑥)) |
| 79 | 78 | rexbidv 3165 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥)) |
| 80 | 77, 79 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) ↔ (𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥))) |
| 81 | 80 | cbvalvw 2036 |
. . . . . . . . . . . . 13
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) ↔ ∀𝑧(𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥)) |
| 82 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 83 | 82 | difexi 5305 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∖ {𝑦}) ∈ V |
| 84 | | psseq1 4070 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (𝑧 ⊊ 𝑦 ↔ (𝑤 ∖ {𝑦}) ⊊ 𝑦)) |
| 85 | | breq1 5127 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (𝑧 ≈ 𝑥 ↔ (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 86 | 85 | rexbidv 3165 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 87 | 84, 86 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → ((𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥) ↔ ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥))) |
| 88 | 83, 87 | spcv 3589 |
. . . . . . . . . . . . 13
⊢
(∀𝑧(𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥) → ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 89 | 81, 88 | sylbi 217 |
. . . . . . . . . . . 12
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 90 | 76, 89 | sylan9 507 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 91 | | ordsucelsuc 7821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝑦 → (𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ suc 𝑦)) |
| 92 | 91 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑦 → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 93 | 53, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 95 | 94 | adantrd 491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → suc 𝑥 ∈ suc 𝑦)) |
| 96 | | elnn 7877 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 97 | | snex 5411 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
{〈𝑦, 𝑥〉} ∈
V |
| 98 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑦 ∈ V |
| 99 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑥 ∈ V |
| 100 | 98, 99 | f1osn 6863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
{〈𝑦, 𝑥〉}:{𝑦}–1-1-onto→{𝑥} |
| 101 | | f1oen3g 8986 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(({〈𝑦, 𝑥〉} ∈ V ∧
{〈𝑦, 𝑥〉}:{𝑦}–1-1-onto→{𝑥}) → {𝑦} ≈ {𝑥}) |
| 102 | 97, 100, 101 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑦} ≈ {𝑥} |
| 103 | 102 | jctr 524 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∖ {𝑦}) ≈ 𝑥 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ {𝑦} ≈ {𝑥})) |
| 104 | | nnord 7874 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ω → Ord 𝑥) |
| 105 | | orddisj 6395 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝑥 → (𝑥 ∩ {𝑥}) = ∅) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅) |
| 107 | | disjdifr 4453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ |
| 108 | 106, 107 | jctil 519 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ω → (((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) |
| 109 | | unen 9065 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ {𝑦} ≈ {𝑥}) ∧ (((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥})) |
| 110 | 103, 108,
109 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ 𝑥 ∈ ω) → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥})) |
| 111 | | difsnid 4791 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝑤 → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) = 𝑤) |
| 112 | 111 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑤 → 𝑤 = ((𝑤 ∖ {𝑦}) ∪ {𝑦})) |
| 113 | | df-suc 6363 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) |
| 114 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑤 → suc 𝑥 = (𝑥 ∪ {𝑥})) |
| 115 | 112, 114 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝑤 → (𝑤 ≈ suc 𝑥 ↔ ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥}))) |
| 116 | 110, 115 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑤 → (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ 𝑥 ∈ ω) → 𝑤 ≈ suc 𝑥)) |
| 117 | 96, 116 | sylan2i 606 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑤 → (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω)) → 𝑤 ≈ suc 𝑥)) |
| 118 | 117 | exp4d 433 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑤 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 → (𝑥 ∈ 𝑦 → (𝑦 ∈ ω → 𝑤 ≈ suc 𝑥)))) |
| 119 | 118 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → (𝑦 ∈ ω → (𝑥 ∈ 𝑦 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 → 𝑤 ≈ suc 𝑥)))) |
| 120 | 119 | imp4b 421 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → 𝑤 ≈ suc 𝑥)) |
| 121 | 95, 120 | jcad 512 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → (suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥))) |
| 122 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → (𝑤 ≈ 𝑧 ↔ 𝑤 ≈ suc 𝑥)) |
| 123 | 122 | rspcev 3606 |
. . . . . . . . . . . . . . 15
⊢ ((suc
𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧) |
| 124 | 121, 123 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧)) |
| 125 | 124 | exlimdv 1933 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (∃𝑥(𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧)) |
| 126 | | df-rex 3062 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 127 | | breq2 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑧)) |
| 128 | 127 | cbvrexvw 3225 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈ suc
𝑦𝑤 ≈ 𝑥 ↔ ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧) |
| 129 | 125, 126,
128 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 130 | 129 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 131 | 90, 130 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 132 | 131 | expl 457 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑤 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 133 | | eleq1w 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝑤 ∈ ω ↔ 𝑦 ∈ ω)) |
| 134 | 133 | pm5.32i 574 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = 𝑦 ∧ 𝑤 ∈ ω) ↔ (𝑤 = 𝑦 ∧ 𝑦 ∈ ω)) |
| 135 | 82 | eqelsuc 6443 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑦 → 𝑤 ∈ suc 𝑦) |
| 136 | | enrefnn 9066 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ω → 𝑤 ≈ 𝑤) |
| 137 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑤)) |
| 138 | 137 | rspcev 3606 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑤) → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 139 | 135, 136,
138 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = 𝑦 ∧ 𝑤 ∈ ω) → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 140 | 139 | 2a1d 26 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = 𝑦 ∧ 𝑤 ∈ ω) → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 141 | 134, 140 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑦 ∧ 𝑦 ∈ ω) → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 142 | 141 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝑦 ∈ ω → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 143 | 142 | adantrd 491 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 144 | 143 | pm2.43d 53 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 145 | 50, 132, 144 | pm2.61ii 183 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧
∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 146 | 145 | ex 412 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 147 | 24, 25, 146 | alrimd 2216 |
. . . . . 6
⊢ (𝑦 ∈ ω →
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → ∀𝑤(𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 148 | 8, 12, 16, 20, 23, 147 | finds 7897 |
. . . . 5
⊢ (𝐴 ∈ ω →
∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥)) |
| 149 | | psseq1 4070 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑤 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 150 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → (𝑤 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) |
| 151 | 150 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥)) |
| 152 | 149, 151 | imbi12d 344 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥) ↔ (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 153 | 152 | spcgv 3580 |
. . . . 5
⊢ (𝐵 ∈ V → (∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥) → (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 154 | 148, 153 | syl5 34 |
. . . 4
⊢ (𝐵 ∈ V → (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 155 | 154 | com3l 89 |
. . 3
⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → (𝐵 ∈ V → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 156 | 155 | imp 406 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (𝐵 ∈ V → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥)) |
| 157 | 4, 156 | mpd 15 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) |