Step | Hyp | Ref
| Expression |
1 | | pssss 4094 |
. . . 4
β’ (π΅ β π΄ β π΅ β π΄) |
2 | | ssexg 5322 |
. . . 4
β’ ((π΅ β π΄ β§ π΄ β Ο) β π΅ β V) |
3 | 1, 2 | sylan 580 |
. . 3
β’ ((π΅ β π΄ β§ π΄ β Ο) β π΅ β V) |
4 | 3 | ancoms 459 |
. 2
β’ ((π΄ β Ο β§ π΅ β π΄) β π΅ β V) |
5 | | psseq2 4087 |
. . . . . . . 8
β’ (π§ = β
β (π€ β π§ β π€ β β
)) |
6 | | rexeq 3321 |
. . . . . . . 8
β’ (π§ = β
β (βπ₯ β π§ π€ β π₯ β βπ₯ β β
π€ β π₯)) |
7 | 5, 6 | imbi12d 344 |
. . . . . . 7
β’ (π§ = β
β ((π€ β π§ β βπ₯ β π§ π€ β π₯) β (π€ β β
β βπ₯ β β
π€ β π₯))) |
8 | 7 | albidv 1923 |
. . . . . 6
β’ (π§ = β
β (βπ€(π€ β π§ β βπ₯ β π§ π€ β π₯) β βπ€(π€ β β
β βπ₯ β β
π€ β π₯))) |
9 | | psseq2 4087 |
. . . . . . . 8
β’ (π§ = π¦ β (π€ β π§ β π€ β π¦)) |
10 | | rexeq 3321 |
. . . . . . . 8
β’ (π§ = π¦ β (βπ₯ β π§ π€ β π₯ β βπ₯ β π¦ π€ β π₯)) |
11 | 9, 10 | imbi12d 344 |
. . . . . . 7
β’ (π§ = π¦ β ((π€ β π§ β βπ₯ β π§ π€ β π₯) β (π€ β π¦ β βπ₯ β π¦ π€ β π₯))) |
12 | 11 | albidv 1923 |
. . . . . 6
β’ (π§ = π¦ β (βπ€(π€ β π§ β βπ₯ β π§ π€ β π₯) β βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯))) |
13 | | psseq2 4087 |
. . . . . . . 8
β’ (π§ = suc π¦ β (π€ β π§ β π€ β suc π¦)) |
14 | | rexeq 3321 |
. . . . . . . 8
β’ (π§ = suc π¦ β (βπ₯ β π§ π€ β π₯ β βπ₯ β suc π¦π€ β π₯)) |
15 | 13, 14 | imbi12d 344 |
. . . . . . 7
β’ (π§ = suc π¦ β ((π€ β π§ β βπ₯ β π§ π€ β π₯) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
16 | 15 | albidv 1923 |
. . . . . 6
β’ (π§ = suc π¦ β (βπ€(π€ β π§ β βπ₯ β π§ π€ β π₯) β βπ€(π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
17 | | psseq2 4087 |
. . . . . . . 8
β’ (π§ = π΄ β (π€ β π§ β π€ β π΄)) |
18 | | rexeq 3321 |
. . . . . . . 8
β’ (π§ = π΄ β (βπ₯ β π§ π€ β π₯ β βπ₯ β π΄ π€ β π₯)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . 7
β’ (π§ = π΄ β ((π€ β π§ β βπ₯ β π§ π€ β π₯) β (π€ β π΄ β βπ₯ β π΄ π€ β π₯))) |
20 | 19 | albidv 1923 |
. . . . . 6
β’ (π§ = π΄ β (βπ€(π€ β π§ β βπ₯ β π§ π€ β π₯) β βπ€(π€ β π΄ β βπ₯ β π΄ π€ β π₯))) |
21 | | npss0 4444 |
. . . . . . . 8
β’ Β¬
π€ β
β
|
22 | 21 | pm2.21i 119 |
. . . . . . 7
β’ (π€ β β
β
βπ₯ β β
π€ β π₯) |
23 | 22 | ax-gen 1797 |
. . . . . 6
β’
βπ€(π€ β β
β
βπ₯ β β
π€ β π₯) |
24 | | nfv 1917 |
. . . . . . 7
β’
β²π€ π¦ β Ο |
25 | | nfa1 2148 |
. . . . . . 7
β’
β²π€βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) |
26 | | elequ1 2113 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π§ = π¦ β (π§ β π€ β π¦ β π€)) |
27 | 26 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ β π€ β (π§ = π¦ β π¦ β π€)) |
28 | 27 | con3d 152 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π§ β π€ β (Β¬ π¦ β π€ β Β¬ π§ = π¦)) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π€ β suc π¦ β§ π§ β π€) β (Β¬ π¦ β π€ β Β¬ π§ = π¦)) |
30 | | pssss 4094 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π€ β suc π¦ β π€ β suc π¦) |
31 | 30 | sseld 3980 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π€ β suc π¦ β (π§ β π€ β π§ β suc π¦)) |
32 | | elsuci 6428 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π§ β suc π¦ β (π§ β π¦ β¨ π§ = π¦)) |
33 | 32 | ord 862 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π§ β suc π¦ β (Β¬ π§ β π¦ β π§ = π¦)) |
34 | 33 | con1d 145 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ β suc π¦ β (Β¬ π§ = π¦ β π§ β π¦)) |
35 | 31, 34 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π€ β suc π¦ β (π§ β π€ β (Β¬ π§ = π¦ β π§ β π¦))) |
36 | 35 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π€ β suc π¦ β§ π§ β π€) β (Β¬ π§ = π¦ β π§ β π¦)) |
37 | 29, 36 | syld 47 |
. . . . . . . . . . . . . . . . . 18
β’ ((π€ β suc π¦ β§ π§ β π€) β (Β¬ π¦ β π€ β π§ β π¦)) |
38 | 37 | impancom 452 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ β suc π¦ β§ Β¬ π¦ β π€) β (π§ β π€ β π§ β π¦)) |
39 | 38 | ssrdv 3987 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β suc π¦ β§ Β¬ π¦ β π€) β π€ β π¦) |
40 | 39 | anim1i 615 |
. . . . . . . . . . . . . . 15
β’ (((π€ β suc π¦ β§ Β¬ π¦ β π€) β§ Β¬ π€ = π¦) β (π€ β π¦ β§ Β¬ π€ = π¦)) |
41 | | dfpss2 4084 |
. . . . . . . . . . . . . . 15
β’ (π€ β π¦ β (π€ β π¦ β§ Β¬ π€ = π¦)) |
42 | 40, 41 | sylibr 233 |
. . . . . . . . . . . . . 14
β’ (((π€ β suc π¦ β§ Β¬ π¦ β π€) β§ Β¬ π€ = π¦) β π€ β π¦) |
43 | | elelsuc 6434 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β π¦ β π₯ β suc π¦) |
44 | 43 | anim1i 615 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β π¦ β§ π€ β π₯) β (π₯ β suc π¦ β§ π€ β π₯)) |
45 | 44 | reximi2 3079 |
. . . . . . . . . . . . . 14
β’
(βπ₯ β
π¦ π€ β π₯ β βπ₯ β suc π¦π€ β π₯) |
46 | 42, 45 | imim12i 62 |
. . . . . . . . . . . . 13
β’ ((π€ β π¦ β βπ₯ β π¦ π€ β π₯) β (((π€ β suc π¦ β§ Β¬ π¦ β π€) β§ Β¬ π€ = π¦) β βπ₯ β suc π¦π€ β π₯)) |
47 | 46 | exp4c 433 |
. . . . . . . . . . . 12
β’ ((π€ β π¦ β βπ₯ β π¦ π€ β π₯) β (π€ β suc π¦ β (Β¬ π¦ β π€ β (Β¬ π€ = π¦ β βπ₯ β suc π¦π€ β π₯)))) |
48 | 47 | sps 2178 |
. . . . . . . . . . 11
β’
(βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) β (π€ β suc π¦ β (Β¬ π¦ β π€ β (Β¬ π€ = π¦ β βπ₯ β suc π¦π€ β π₯)))) |
49 | 48 | adantl 482 |
. . . . . . . . . 10
β’ ((π¦ β Ο β§
βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β (Β¬ π¦ β π€ β (Β¬ π€ = π¦ β βπ₯ β suc π¦π€ β π₯)))) |
50 | 49 | com4t 93 |
. . . . . . . . 9
β’ (Β¬
π¦ β π€ β (Β¬ π€ = π¦ β ((π¦ β Ο β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯)))) |
51 | | anidm 565 |
. . . . . . . . . . . . . 14
β’ ((π€ β suc π¦ β§ π€ β suc π¦) β π€ β suc π¦) |
52 | | ssdif 4138 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β suc π¦ β (π€ β {π¦}) β (suc π¦ β {π¦})) |
53 | | nnord 7859 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ β Ο β Ord π¦) |
54 | | orddif 6457 |
. . . . . . . . . . . . . . . . . . 19
β’ (Ord
π¦ β π¦ = (suc π¦ β {π¦})) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β Ο β π¦ = (suc π¦ β {π¦})) |
56 | 55 | sseq2d 4013 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β Ο β ((π€ β {π¦}) β π¦ β (π€ β {π¦}) β (suc π¦ β {π¦}))) |
57 | 52, 56 | imbitrrid 245 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β Ο β (π€ β suc π¦ β (π€ β {π¦}) β π¦)) |
58 | 30, 57 | syl5 34 |
. . . . . . . . . . . . . . 15
β’ (π¦ β Ο β (π€ β suc π¦ β (π€ β {π¦}) β π¦)) |
59 | | pssnel 4469 |
. . . . . . . . . . . . . . . 16
β’ (π€ β suc π¦ β βπ§(π§ β suc π¦ β§ Β¬ π§ β π€)) |
60 | | eleq2 2822 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π€ β {π¦}) = π¦ β (π§ β (π€ β {π¦}) β π§ β π¦)) |
61 | | eldifi 4125 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π§ β (π€ β {π¦}) β π§ β π€) |
62 | 60, 61 | syl6bir 253 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π€ β {π¦}) = π¦ β (π§ β π¦ β π§ β π€)) |
63 | 62 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π¦ β π€ β§ π§ β suc π¦) β§ (π€ β {π¦}) = π¦) β (π§ β π¦ β π§ β π€)) |
64 | | eleq1a 2828 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π¦ β π€ β (π§ = π¦ β π§ β π€)) |
65 | 33, 64 | sylan9r 509 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π¦ β π€ β§ π§ β suc π¦) β (Β¬ π§ β π¦ β π§ β π€)) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π¦ β π€ β§ π§ β suc π¦) β§ (π€ β {π¦}) = π¦) β (Β¬ π§ β π¦ β π§ β π€)) |
67 | 63, 66 | pm2.61d 179 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π¦ β π€ β§ π§ β suc π¦) β§ (π€ β {π¦}) = π¦) β π§ β π€) |
68 | 67 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π¦ β π€ β§ π§ β suc π¦) β ((π€ β {π¦}) = π¦ β π§ β π€)) |
69 | 68 | con3d 152 |
. . . . . . . . . . . . . . . . . 18
β’ ((π¦ β π€ β§ π§ β suc π¦) β (Β¬ π§ β π€ β Β¬ (π€ β {π¦}) = π¦)) |
70 | 69 | expimpd 454 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β π€ β ((π§ β suc π¦ β§ Β¬ π§ β π€) β Β¬ (π€ β {π¦}) = π¦)) |
71 | 70 | exlimdv 1936 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β π€ β (βπ§(π§ β suc π¦ β§ Β¬ π§ β π€) β Β¬ (π€ β {π¦}) = π¦)) |
72 | 59, 71 | syl5 34 |
. . . . . . . . . . . . . . 15
β’ (π¦ β π€ β (π€ β suc π¦ β Β¬ (π€ β {π¦}) = π¦)) |
73 | 58, 72 | im2anan9r 621 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π€ β§ π¦ β Ο) β ((π€ β suc π¦ β§ π€ β suc π¦) β ((π€ β {π¦}) β π¦ β§ Β¬ (π€ β {π¦}) = π¦))) |
74 | 51, 73 | biimtrrid 242 |
. . . . . . . . . . . . 13
β’ ((π¦ β π€ β§ π¦ β Ο) β (π€ β suc π¦ β ((π€ β {π¦}) β π¦ β§ Β¬ (π€ β {π¦}) = π¦))) |
75 | | dfpss2 4084 |
. . . . . . . . . . . . 13
β’ ((π€ β {π¦}) β π¦ β ((π€ β {π¦}) β π¦ β§ Β¬ (π€ β {π¦}) = π¦)) |
76 | 74, 75 | syl6ibr 251 |
. . . . . . . . . . . 12
β’ ((π¦ β π€ β§ π¦ β Ο) β (π€ β suc π¦ β (π€ β {π¦}) β π¦)) |
77 | | psseq1 4086 |
. . . . . . . . . . . . . . 15
β’ (π€ = π§ β (π€ β π¦ β π§ β π¦)) |
78 | | breq1 5150 |
. . . . . . . . . . . . . . . 16
β’ (π€ = π§ β (π€ β π₯ β π§ β π₯)) |
79 | 78 | rexbidv 3178 |
. . . . . . . . . . . . . . 15
β’ (π€ = π§ β (βπ₯ β π¦ π€ β π₯ β βπ₯ β π¦ π§ β π₯)) |
80 | 77, 79 | imbi12d 344 |
. . . . . . . . . . . . . 14
β’ (π€ = π§ β ((π€ β π¦ β βπ₯ β π¦ π€ β π₯) β (π§ β π¦ β βπ₯ β π¦ π§ β π₯))) |
81 | 80 | cbvalvw 2039 |
. . . . . . . . . . . . 13
β’
(βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) β βπ§(π§ β π¦ β βπ₯ β π¦ π§ β π₯)) |
82 | | vex 3478 |
. . . . . . . . . . . . . . 15
β’ π€ β V |
83 | 82 | difexi 5327 |
. . . . . . . . . . . . . 14
β’ (π€ β {π¦}) β V |
84 | | psseq1 4086 |
. . . . . . . . . . . . . . 15
β’ (π§ = (π€ β {π¦}) β (π§ β π¦ β (π€ β {π¦}) β π¦)) |
85 | | breq1 5150 |
. . . . . . . . . . . . . . . 16
β’ (π§ = (π€ β {π¦}) β (π§ β π₯ β (π€ β {π¦}) β π₯)) |
86 | 85 | rexbidv 3178 |
. . . . . . . . . . . . . . 15
β’ (π§ = (π€ β {π¦}) β (βπ₯ β π¦ π§ β π₯ β βπ₯ β π¦ (π€ β {π¦}) β π₯)) |
87 | 84, 86 | imbi12d 344 |
. . . . . . . . . . . . . 14
β’ (π§ = (π€ β {π¦}) β ((π§ β π¦ β βπ₯ β π¦ π§ β π₯) β ((π€ β {π¦}) β π¦ β βπ₯ β π¦ (π€ β {π¦}) β π₯))) |
88 | 83, 87 | spcv 3595 |
. . . . . . . . . . . . 13
β’
(βπ§(π§ β π¦ β βπ₯ β π¦ π§ β π₯) β ((π€ β {π¦}) β π¦ β βπ₯ β π¦ (π€ β {π¦}) β π₯)) |
89 | 81, 88 | sylbi 216 |
. . . . . . . . . . . 12
β’
(βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) β ((π€ β {π¦}) β π¦ β βπ₯ β π¦ (π€ β {π¦}) β π₯)) |
90 | 76, 89 | sylan9 508 |
. . . . . . . . . . 11
β’ (((π¦ β π€ β§ π¦ β Ο) β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β π¦ (π€ β {π¦}) β π₯)) |
91 | | ordsucelsuc 7806 |
. . . . . . . . . . . . . . . . . . . 20
β’ (Ord
π¦ β (π₯ β π¦ β suc π₯ β suc π¦)) |
92 | 91 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
β’ (Ord
π¦ β (π₯ β π¦ β suc π₯ β suc π¦)) |
93 | 53, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β Ο β (π₯ β π¦ β suc π₯ β suc π¦)) |
94 | 93 | adantl 482 |
. . . . . . . . . . . . . . . . 17
β’ ((π¦ β π€ β§ π¦ β Ο) β (π₯ β π¦ β suc π₯ β suc π¦)) |
95 | 94 | adantrd 492 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π€ β§ π¦ β Ο) β ((π₯ β π¦ β§ (π€ β {π¦}) β π₯) β suc π₯ β suc π¦)) |
96 | | elnn 7862 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π₯ β π¦ β§ π¦ β Ο) β π₯ β Ο) |
97 | | snex 5430 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
{β¨π¦, π₯β©} β
V |
98 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π¦ β V |
99 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π₯ β V |
100 | 98, 99 | f1osn 6870 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
{β¨π¦, π₯β©}:{π¦}β1-1-ontoβ{π₯} |
101 | | f1oen3g 8958 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(({β¨π¦, π₯β©} β V β§
{β¨π¦, π₯β©}:{π¦}β1-1-ontoβ{π₯}) β {π¦} β {π₯}) |
102 | 97, 100, 101 | mp2an 690 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ {π¦} β {π₯} |
103 | 102 | jctr 525 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π€ β {π¦}) β π₯ β ((π€ β {π¦}) β π₯ β§ {π¦} β {π₯})) |
104 | | nnord 7859 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π₯ β Ο β Ord π₯) |
105 | | orddisj 6399 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (Ord
π₯ β (π₯ β© {π₯}) = β
) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π₯ β Ο β (π₯ β© {π₯}) = β
) |
107 | | incom 4200 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ({π¦} β© (π€ β {π¦})) = ((π€ β {π¦}) β© {π¦}) |
108 | | disjdif 4470 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ({π¦} β© (π€ β {π¦})) = β
|
109 | 107, 108 | eqtr3i 2762 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π€ β {π¦}) β© {π¦}) = β
|
110 | 106, 109 | jctil 520 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π₯ β Ο β (((π€ β {π¦}) β© {π¦}) = β
β§ (π₯ β© {π₯}) = β
)) |
111 | | unen 9042 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π€ β {π¦}) β π₯ β§ {π¦} β {π₯}) β§ (((π€ β {π¦}) β© {π¦}) = β
β§ (π₯ β© {π₯}) = β
)) β ((π€ β {π¦}) βͺ {π¦}) β (π₯ βͺ {π₯})) |
112 | 103, 110,
111 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π€ β {π¦}) β π₯ β§ π₯ β Ο) β ((π€ β {π¦}) βͺ {π¦}) β (π₯ βͺ {π₯})) |
113 | | difsnid 4812 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π¦ β π€ β ((π€ β {π¦}) βͺ {π¦}) = π€) |
114 | 113 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π¦ β π€ β π€ = ((π€ β {π¦}) βͺ {π¦})) |
115 | | df-suc 6367 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ suc π₯ = (π₯ βͺ {π₯}) |
116 | 115 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π¦ β π€ β suc π₯ = (π₯ βͺ {π₯})) |
117 | 114, 116 | breq12d 5160 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π¦ β π€ β (π€ β suc π₯ β ((π€ β {π¦}) βͺ {π¦}) β (π₯ βͺ {π₯}))) |
118 | 112, 117 | imbitrrid 245 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ β π€ β (((π€ β {π¦}) β π₯ β§ π₯ β Ο) β π€ β suc π₯)) |
119 | 96, 118 | sylan2i 606 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ β π€ β (((π€ β {π¦}) β π₯ β§ (π₯ β π¦ β§ π¦ β Ο)) β π€ β suc π₯)) |
120 | 119 | exp4d 434 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β π€ β ((π€ β {π¦}) β π₯ β (π₯ β π¦ β (π¦ β Ο β π€ β suc π₯)))) |
121 | 120 | com24 95 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β π€ β (π¦ β Ο β (π₯ β π¦ β ((π€ β {π¦}) β π₯ β π€ β suc π₯)))) |
122 | 121 | imp4b 422 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π€ β§ π¦ β Ο) β ((π₯ β π¦ β§ (π€ β {π¦}) β π₯) β π€ β suc π₯)) |
123 | 95, 122 | jcad 513 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β π€ β§ π¦ β Ο) β ((π₯ β π¦ β§ (π€ β {π¦}) β π₯) β (suc π₯ β suc π¦ β§ π€ β suc π₯))) |
124 | | breq2 5151 |
. . . . . . . . . . . . . . . 16
β’ (π§ = suc π₯ β (π€ β π§ β π€ β suc π₯)) |
125 | 124 | rspcev 3612 |
. . . . . . . . . . . . . . 15
β’ ((suc
π₯ β suc π¦ β§ π€ β suc π₯) β βπ§ β suc π¦π€ β π§) |
126 | 123, 125 | syl6 35 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π€ β§ π¦ β Ο) β ((π₯ β π¦ β§ (π€ β {π¦}) β π₯) β βπ§ β suc π¦π€ β π§)) |
127 | 126 | exlimdv 1936 |
. . . . . . . . . . . . 13
β’ ((π¦ β π€ β§ π¦ β Ο) β (βπ₯(π₯ β π¦ β§ (π€ β {π¦}) β π₯) β βπ§ β suc π¦π€ β π§)) |
128 | | df-rex 3071 |
. . . . . . . . . . . . 13
β’
(βπ₯ β
π¦ (π€ β {π¦}) β π₯ β βπ₯(π₯ β π¦ β§ (π€ β {π¦}) β π₯)) |
129 | | breq2 5151 |
. . . . . . . . . . . . . 14
β’ (π₯ = π§ β (π€ β π₯ β π€ β π§)) |
130 | 129 | cbvrexvw 3235 |
. . . . . . . . . . . . 13
β’
(βπ₯ β suc
π¦π€ β π₯ β βπ§ β suc π¦π€ β π§) |
131 | 127, 128,
130 | 3imtr4g 295 |
. . . . . . . . . . . 12
β’ ((π¦ β π€ β§ π¦ β Ο) β (βπ₯ β π¦ (π€ β {π¦}) β π₯ β βπ₯ β suc π¦π€ β π₯)) |
132 | 131 | adantr 481 |
. . . . . . . . . . 11
β’ (((π¦ β π€ β§ π¦ β Ο) β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (βπ₯ β π¦ (π€ β {π¦}) β π₯ β βπ₯ β suc π¦π€ β π₯)) |
133 | 90, 132 | syld 47 |
. . . . . . . . . 10
β’ (((π¦ β π€ β§ π¦ β Ο) β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯)) |
134 | 133 | expl 458 |
. . . . . . . . 9
β’ (π¦ β π€ β ((π¦ β Ο β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
135 | 82 | eqelsuc 6445 |
. . . . . . . . . . 11
β’ (π€ = π¦ β π€ β suc π¦) |
136 | 82 | enref 8977 |
. . . . . . . . . . 11
β’ π€ β π€ |
137 | | breq2 5151 |
. . . . . . . . . . . 12
β’ (π₯ = π€ β (π€ β π₯ β π€ β π€)) |
138 | 137 | rspcev 3612 |
. . . . . . . . . . 11
β’ ((π€ β suc π¦ β§ π€ β π€) β βπ₯ β suc π¦π€ β π₯) |
139 | 135, 136,
138 | sylancl 586 |
. . . . . . . . . 10
β’ (π€ = π¦ β βπ₯ β suc π¦π€ β π₯) |
140 | 139 | 2a1d 26 |
. . . . . . . . 9
β’ (π€ = π¦ β ((π¦ β Ο β§ βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
141 | 50, 134, 140 | pm2.61ii 183 |
. . . . . . . 8
β’ ((π¦ β Ο β§
βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯)) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯)) |
142 | 141 | ex 413 |
. . . . . . 7
β’ (π¦ β Ο β
(βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) β (π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
143 | 24, 25, 142 | alrimd 2208 |
. . . . . 6
β’ (π¦ β Ο β
(βπ€(π€ β π¦ β βπ₯ β π¦ π€ β π₯) β βπ€(π€ β suc π¦ β βπ₯ β suc π¦π€ β π₯))) |
144 | 8, 12, 16, 20, 23, 143 | finds 7885 |
. . . . 5
β’ (π΄ β Ο β
βπ€(π€ β π΄ β βπ₯ β π΄ π€ β π₯)) |
145 | | psseq1 4086 |
. . . . . . 7
β’ (π€ = π΅ β (π€ β π΄ β π΅ β π΄)) |
146 | | breq1 5150 |
. . . . . . . 8
β’ (π€ = π΅ β (π€ β π₯ β π΅ β π₯)) |
147 | 146 | rexbidv 3178 |
. . . . . . 7
β’ (π€ = π΅ β (βπ₯ β π΄ π€ β π₯ β βπ₯ β π΄ π΅ β π₯)) |
148 | 145, 147 | imbi12d 344 |
. . . . . 6
β’ (π€ = π΅ β ((π€ β π΄ β βπ₯ β π΄ π€ β π₯) β (π΅ β π΄ β βπ₯ β π΄ π΅ β π₯))) |
149 | 148 | spcgv 3586 |
. . . . 5
β’ (π΅ β V β (βπ€(π€ β π΄ β βπ₯ β π΄ π€ β π₯) β (π΅ β π΄ β βπ₯ β π΄ π΅ β π₯))) |
150 | 144, 149 | syl5 34 |
. . . 4
β’ (π΅ β V β (π΄ β Ο β (π΅ β π΄ β βπ₯ β π΄ π΅ β π₯))) |
151 | 150 | com3l 89 |
. . 3
β’ (π΄ β Ο β (π΅ β π΄ β (π΅ β V β βπ₯ β π΄ π΅ β π₯))) |
152 | 151 | imp 407 |
. 2
β’ ((π΄ β Ο β§ π΅ β π΄) β (π΅ β V β βπ₯ β π΄ π΅ β π₯)) |
153 | 4, 152 | mpd 15 |
1
β’ ((π΄ β Ο β§ π΅ β π΄) β βπ₯ β π΄ π΅ β π₯) |