Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidu1 Structured version   Visualization version   GIF version

Theorem exidu1 37264
Description: Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
exidu1.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidu1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem exidu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exidu1.1 . . 3 𝑋 = ran 𝐺
21isexid2 37263 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
3 simpl 482 . . . . . . 7 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
43ralimi 3078 . . . . . 6 (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 oveq2 7422 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦))
6 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
75, 6eqeq12d 2743 . . . . . . 7 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦))
87rspcv 3603 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦))
94, 8syl5 34 . . . . 5 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑦) = 𝑦))
10 simpr 484 . . . . . . 7 (((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑥𝐺𝑦) = 𝑥)
1110ralimi 3078 . . . . . 6 (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥)
12 oveq1 7421 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐺𝑦) = (𝑢𝐺𝑦))
13 id 22 . . . . . . . 8 (𝑥 = 𝑢𝑥 = 𝑢)
1412, 13eqeq12d 2743 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥𝐺𝑦) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑢))
1514rspcv 3603 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥 → (𝑢𝐺𝑦) = 𝑢))
1611, 15syl5 34 . . . . 5 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑢𝐺𝑦) = 𝑢))
179, 16im2anan9r 620 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → ((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢)))
18 eqtr2 2751 . . . . 5 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑦 = 𝑢)
1918equcomd 2015 . . . 4 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑢 = 𝑦)
2017, 19syl6 35 . . 3 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦))
2120rgen2 3192 . 2 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)
22 oveq1 7421 . . . . 5 (𝑢 = 𝑦 → (𝑢𝐺𝑥) = (𝑦𝐺𝑥))
2322eqeq1d 2729 . . . 4 (𝑢 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑦𝐺𝑥) = 𝑥))
2423ovanraleqv 7438 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)))
2524reu4 3724 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)))
262, 21, 25sylanblrc 589 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  ∃!wreu 3369  cin 3943  ran crn 5673  (class class class)co 7414   ExId cexid 37252  Magmacmagm 37256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-ov 7417  df-exid 37253  df-mgmOLD 37257
This theorem is referenced by:  iorlid  37266  cmpidelt  37267  exidresid  37287
  Copyright terms: Public domain W3C validator