| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | exidu1.1 | . . 3
⊢ 𝑋 = ran 𝐺 | 
| 2 | 1 | isexid2 37863 | . 2
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ ∃𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | 
| 3 |  | simpl 482 | . . . . . . 7
⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥) | 
| 4 | 3 | ralimi 3082 | . . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) | 
| 5 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦)) | 
| 6 |  | id 22 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 7 | 5, 6 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦)) | 
| 8 | 7 | rspcv 3617 | . . . . . 6
⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦)) | 
| 9 | 4, 8 | syl5 34 | . . . . 5
⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑦) = 𝑦)) | 
| 10 |  | simpr 484 | . . . . . . 7
⊢ (((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑥𝐺𝑦) = 𝑥) | 
| 11 | 10 | ralimi 3082 | . . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → ∀𝑥 ∈ 𝑋 (𝑥𝐺𝑦) = 𝑥) | 
| 12 |  | oveq1 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑥𝐺𝑦) = (𝑢𝐺𝑦)) | 
| 13 |  | id 22 | . . . . . . . 8
⊢ (𝑥 = 𝑢 → 𝑥 = 𝑢) | 
| 14 | 12, 13 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑥 = 𝑢 → ((𝑥𝐺𝑦) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑢)) | 
| 15 | 14 | rspcv 3617 | . . . . . 6
⊢ (𝑢 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥𝐺𝑦) = 𝑥 → (𝑢𝐺𝑦) = 𝑢)) | 
| 16 | 11, 15 | syl5 34 | . . . . 5
⊢ (𝑢 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑢𝐺𝑦) = 𝑢)) | 
| 17 | 9, 16 | im2anan9r 621 | . . . 4
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → ((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢))) | 
| 18 |  | eqtr2 2760 | . . . . 5
⊢ (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑦 = 𝑢) | 
| 19 | 18 | equcomd 2017 | . . . 4
⊢ (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑢 = 𝑦) | 
| 20 | 17, 19 | syl6 35 | . . 3
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)) | 
| 21 | 20 | rgen2 3198 | . 2
⊢
∀𝑢 ∈
𝑋 ∀𝑦 ∈ 𝑋 ((∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦) | 
| 22 |  | oveq1 7439 | . . . . 5
⊢ (𝑢 = 𝑦 → (𝑢𝐺𝑥) = (𝑦𝐺𝑥)) | 
| 23 | 22 | eqeq1d 2738 | . . . 4
⊢ (𝑢 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑦𝐺𝑥) = 𝑥)) | 
| 24 | 23 | ovanraleqv 7456 | . . 3
⊢ (𝑢 = 𝑦 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥))) | 
| 25 | 24 | reu4 3736 | . 2
⊢
(∃!𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑢 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦))) | 
| 26 | 2, 21, 25 | sylanblrc 590 | 1
⊢ (𝐺 ∈ (Magma ∩ ExId )
→ ∃!𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) |