Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidu1 Structured version   Visualization version   GIF version

Theorem exidu1 37846
Description: Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
exidu1.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidu1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem exidu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exidu1.1 . . 3 𝑋 = ran 𝐺
21isexid2 37845 . 2 (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
3 simpl 482 . . . . . . 7 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
43ralimi 3066 . . . . . 6 (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 oveq2 7357 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢𝐺𝑥) = (𝑢𝐺𝑦))
6 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
75, 6eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑦))
87rspcv 3573 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝐺𝑦) = 𝑦))
94, 8syl5 34 . . . . 5 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑦) = 𝑦))
10 simpr 484 . . . . . . 7 (((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑥𝐺𝑦) = 𝑥)
1110ralimi 3066 . . . . . 6 (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥)
12 oveq1 7356 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐺𝑦) = (𝑢𝐺𝑦))
13 id 22 . . . . . . . 8 (𝑥 = 𝑢𝑥 = 𝑢)
1412, 13eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥𝐺𝑦) = 𝑥 ↔ (𝑢𝐺𝑦) = 𝑢))
1514rspcv 3573 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐺𝑦) = 𝑥 → (𝑢𝐺𝑦) = 𝑢))
1611, 15syl5 34 . . . . 5 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥) → (𝑢𝐺𝑦) = 𝑢))
179, 16im2anan9r 621 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → ((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢)))
18 eqtr2 2750 . . . . 5 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑦 = 𝑢)
1918equcomd 2019 . . . 4 (((𝑢𝐺𝑦) = 𝑦 ∧ (𝑢𝐺𝑦) = 𝑢) → 𝑢 = 𝑦)
2017, 19syl6 35 . . 3 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦))
2120rgen2 3169 . 2 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)
22 oveq1 7356 . . . . 5 (𝑢 = 𝑦 → (𝑢𝐺𝑥) = (𝑦𝐺𝑥))
2322eqeq1d 2731 . . . 4 (𝑢 = 𝑦 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑦𝐺𝑥) = 𝑥))
2423ovanraleqv 7373 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)))
2524reu4 3691 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑦) = 𝑥)) → 𝑢 = 𝑦)))
262, 21, 25sylanblrc 590 1 (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  cin 3902  ran crn 5620  (class class class)co 7349   ExId cexid 37834  Magmacmagm 37838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-ov 7352  df-exid 37835  df-mgmOLD 37839
This theorem is referenced by:  iorlid  37848  cmpidelt  37849  exidresid  37869
  Copyright terms: Public domain W3C validator