MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbreu Structured version   Visualization version   GIF version

Theorem lbreu 12093
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem lbreu
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5099 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
21rspcv 3575 . . . . . . 7 (𝑤𝑆 → (∀𝑦𝑆 𝑥𝑦𝑥𝑤))
3 breq2 5099 . . . . . . . 8 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
43rspcv 3575 . . . . . . 7 (𝑥𝑆 → (∀𝑦𝑆 𝑤𝑦𝑤𝑥))
52, 4im2anan9r 621 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑥𝑤𝑤𝑥)))
6 ssel 3931 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → (𝑥𝑆𝑥 ∈ ℝ))
7 ssel 3931 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → (𝑤𝑆𝑤 ∈ ℝ))
86, 7anim12d 609 . . . . . . . . . 10 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)))
98impcom 407 . . . . . . . . 9 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))
10 letri3 11219 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
119, 10syl 17 . . . . . . . 8 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
1211exbiri 810 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → (𝑆 ⊆ ℝ → ((𝑥𝑤𝑤𝑥) → 𝑥 = 𝑤)))
1312com23 86 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((𝑥𝑤𝑤𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
145, 13syld 47 . . . . 5 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
1514com3r 87 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1615ralrimivv 3170 . . 3 (𝑆 ⊆ ℝ → ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤))
1716anim1ci 616 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
18 breq1 5098 . . . 4 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
1918ralbidv 3152 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 𝑤𝑦))
2019reu4 3693 . 2 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
2117, 20sylibr 234 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  wss 3905   class class class wbr 5095  cr 11027  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  lbcl  12094  lble  12095  uzwo2  12831
  Copyright terms: Public domain W3C validator