| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbreu | Structured version Visualization version GIF version | ||
| Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
| Ref | Expression |
|---|---|
| lbreu | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) | |
| 2 | 1 | rspcv 3587 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤)) |
| 3 | breq2 5114 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥)) | |
| 4 | 3 | rspcv 3587 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥)) |
| 5 | 2, 4 | im2anan9r 621 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
| 6 | ssel 3943 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ)) | |
| 7 | ssel 3943 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ)) | |
| 8 | 6, 7 | anim12d 609 | . . . . . . . . . 10 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))) |
| 9 | 8 | impcom 407 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)) |
| 10 | letri3 11266 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) | |
| 11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
| 12 | 11 | exbiri 810 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑆 ⊆ ℝ → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → 𝑥 = 𝑤))) |
| 13 | 12 | com23 86 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
| 14 | 5, 13 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
| 15 | 14 | com3r 87 | . . . 4 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 16 | 15 | ralrimivv 3179 | . . 3 ⊢ (𝑆 ⊆ ℝ → ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤)) |
| 17 | 16 | anim1ci 616 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 18 | breq1 5113 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
| 19 | 18 | ralbidv 3157 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦)) |
| 20 | 19 | reu4 3705 | . 2 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 21 | 17, 20 | sylibr 234 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∃!wreu 3354 ⊆ wss 3917 class class class wbr 5110 ℝcr 11074 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: lbcl 12141 lble 12142 uzwo2 12878 |
| Copyright terms: Public domain | W3C validator |