MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbreu Structured version   Visualization version   GIF version

Theorem lbreu 12216
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem lbreu
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
21rspcv 3618 . . . . . . 7 (𝑤𝑆 → (∀𝑦𝑆 𝑥𝑦𝑥𝑤))
3 breq2 5152 . . . . . . . 8 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
43rspcv 3618 . . . . . . 7 (𝑥𝑆 → (∀𝑦𝑆 𝑤𝑦𝑤𝑥))
52, 4im2anan9r 621 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑥𝑤𝑤𝑥)))
6 ssel 3989 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → (𝑥𝑆𝑥 ∈ ℝ))
7 ssel 3989 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → (𝑤𝑆𝑤 ∈ ℝ))
86, 7anim12d 609 . . . . . . . . . 10 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)))
98impcom 407 . . . . . . . . 9 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))
10 letri3 11344 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
119, 10syl 17 . . . . . . . 8 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
1211exbiri 811 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → (𝑆 ⊆ ℝ → ((𝑥𝑤𝑤𝑥) → 𝑥 = 𝑤)))
1312com23 86 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((𝑥𝑤𝑤𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
145, 13syld 47 . . . . 5 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
1514com3r 87 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1615ralrimivv 3198 . . 3 (𝑆 ⊆ ℝ → ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤))
1716anim1ci 616 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
18 breq1 5151 . . . 4 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
1918ralbidv 3176 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 𝑤𝑦))
2019reu4 3740 . 2 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
2117, 20sylibr 234 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  wss 3963   class class class wbr 5148  cr 11152  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299
This theorem is referenced by:  lbcl  12217  lble  12218  uzwo2  12952
  Copyright terms: Public domain W3C validator