| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbreu | Structured version Visualization version GIF version | ||
| Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
| Ref | Expression |
|---|---|
| lbreu | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) | |
| 2 | 1 | rspcv 3569 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤)) |
| 3 | breq2 5099 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥)) | |
| 4 | 3 | rspcv 3569 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥)) |
| 5 | 2, 4 | im2anan9r 621 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
| 6 | ssel 3924 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ)) | |
| 7 | ssel 3924 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ)) | |
| 8 | 6, 7 | anim12d 609 | . . . . . . . . . 10 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))) |
| 9 | 8 | impcom 407 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)) |
| 10 | letri3 11207 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) | |
| 11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
| 12 | 11 | exbiri 810 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑆 ⊆ ℝ → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → 𝑥 = 𝑤))) |
| 13 | 12 | com23 86 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
| 14 | 5, 13 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
| 15 | 14 | com3r 87 | . . . 4 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 16 | 15 | ralrimivv 3174 | . . 3 ⊢ (𝑆 ⊆ ℝ → ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤)) |
| 17 | 16 | anim1ci 616 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 18 | breq1 5098 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
| 19 | 18 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦)) |
| 20 | 19 | reu4 3686 | . 2 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
| 21 | 17, 20 | sylibr 234 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∃!wreu 3345 ⊆ wss 3898 class class class wbr 5095 ℝcr 11014 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: lbcl 12082 lble 12083 uzwo2 12814 |
| Copyright terms: Public domain | W3C validator |