![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbreu | Structured version Visualization version GIF version |
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
Ref | Expression |
---|---|
lbreu | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) | |
2 | 1 | rspcv 3631 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤)) |
3 | breq2 5170 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥)) | |
4 | 3 | rspcv 3631 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥)) |
5 | 2, 4 | im2anan9r 620 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
6 | ssel 4002 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ)) | |
7 | ssel 4002 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ)) | |
8 | 6, 7 | anim12d 608 | . . . . . . . . . 10 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))) |
9 | 8 | impcom 407 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)) |
10 | letri3 11375 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
12 | 11 | exbiri 810 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑆 ⊆ ℝ → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → 𝑥 = 𝑤))) |
13 | 12 | com23 86 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
14 | 5, 13 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
15 | 14 | com3r 87 | . . . 4 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
16 | 15 | ralrimivv 3206 | . . 3 ⊢ (𝑆 ⊆ ℝ → ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤)) |
17 | 16 | anim1ci 615 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
18 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
19 | 18 | ralbidv 3184 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦)) |
20 | 19 | reu4 3753 | . 2 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
21 | 17, 20 | sylibr 234 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 ⊆ wss 3976 class class class wbr 5166 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: lbcl 12246 lble 12247 uzwo2 12977 |
Copyright terms: Public domain | W3C validator |