![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbreu | Structured version Visualization version GIF version |
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
Ref | Expression |
---|---|
lbreu | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5143 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) | |
2 | 1 | rspcv 3600 | . . . . . . 7 ⊢ (𝑤 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤)) |
3 | breq2 5143 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥)) | |
4 | 3 | rspcv 3600 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥)) |
5 | 2, 4 | im2anan9r 620 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
6 | ssel 3968 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ)) | |
7 | ssel 3968 | . . . . . . . . . . 11 ⊢ (𝑆 ⊆ ℝ → (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ)) | |
8 | 6, 7 | anim12d 608 | . . . . . . . . . 10 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))) |
9 | 8 | impcom 407 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)) |
10 | letri3 11297 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
12 | 11 | exbiri 808 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑆 ⊆ ℝ → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → 𝑥 = 𝑤))) |
13 | 12 | com23 86 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
14 | 5, 13 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
15 | 14 | com3r 87 | . . . 4 ⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
16 | 15 | ralrimivv 3190 | . . 3 ⊢ (𝑆 ⊆ ℝ → ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤)) |
17 | 16 | anim1ci 615 | . 2 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
18 | breq1 5142 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) | |
19 | 18 | ralbidv 3169 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦)) |
20 | 19 | reu4 3720 | . 2 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
21 | 17, 20 | sylibr 233 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∃!wreu 3366 ⊆ wss 3941 class class class wbr 5139 ℝcr 11106 ≤ cle 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 |
This theorem is referenced by: lbcl 12163 lble 12164 uzwo2 12894 |
Copyright terms: Public domain | W3C validator |