MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 620
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantrd 491 . 2 (𝜑 → ((𝜓𝜏) → 𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantld 490 . 2 (𝜃 → ((𝜓𝜏) → 𝜂))
52, 4anim12ii 618 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  im2anan9r  621  anim12  808  mo4  2563  trin  5213  somo  5568  xpss12  5636  f1oun  6790  poxp  8067  soxp  8068  brecop  8743  dfac5lem4  10028  ingru  10717  genpss  10906  genpnnp  10907  tgcl  22904  txlm  23583  upgrpredgv  29138  3wlkdlem4  30163  frgrwopreglem5  30322  frgrwopreglem5ALT  30323  icorempo  37468  ax12eq  39113  ax12el  39114  odd2prm2  47880
  Copyright terms: Public domain W3C validator