| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantrd 491 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 4 | 3 | adantld 490 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| 5 | 2, 4 | anim12ii 618 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: im2anan9r 621 anim12 808 mo4 2563 trin 5213 somo 5568 xpss12 5636 f1oun 6790 poxp 8067 soxp 8068 brecop 8743 dfac5lem4 10028 ingru 10717 genpss 10906 genpnnp 10907 tgcl 22904 txlm 23583 upgrpredgv 29138 3wlkdlem4 30163 frgrwopreglem5 30322 frgrwopreglem5ALT 30323 icorempo 37468 ax12eq 39113 ax12el 39114 odd2prm2 47880 |
| Copyright terms: Public domain | W3C validator |