MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 619
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantrd 491 . 2 (𝜑 → ((𝜓𝜏) → 𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantld 490 . 2 (𝜃 → ((𝜓𝜏) → 𝜂))
52, 4anim12ii 617 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  im2anan9r  620  anim12  808  trin  5295  somo  5646  xpss12  5715  f1oun  6881  poxp  8169  soxp  8170  brecop  8868  dfac5lem4  10195  ingru  10884  genpss  11073  genpnnp  11074  tgcl  22997  txlm  23677  upgrpredgv  29174  3wlkdlem4  30194  frgrwopreglem5  30353  frgrwopreglem5ALT  30354  icorempo  37317  ax12eq  38897  ax12el  38898  odd2prm2  47592
  Copyright terms: Public domain W3C validator