| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantrd 491 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 4 | 3 | adantld 490 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| 5 | 2, 4 | anim12ii 618 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: im2anan9r 621 anim12 808 mo4 2559 trin 5221 somo 5578 xpss12 5646 f1oun 6801 poxp 8084 soxp 8085 brecop 8760 dfac5lem4 10055 ingru 10744 genpss 10933 genpnnp 10934 tgcl 22832 txlm 23511 upgrpredgv 29042 3wlkdlem4 30064 frgrwopreglem5 30223 frgrwopreglem5ALT 30224 icorempo 37312 ax12eq 38907 ax12el 38908 odd2prm2 47692 |
| Copyright terms: Public domain | W3C validator |