MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 620
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantrd 491 . 2 (𝜑 → ((𝜓𝜏) → 𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantld 490 . 2 (𝜃 → ((𝜓𝜏) → 𝜂))
52, 4anim12ii 618 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  im2anan9r  621  anim12  808  mo4  2566  trin  5246  somo  5605  xpss12  5674  f1oun  6842  poxp  8132  soxp  8133  brecop  8829  dfac5lem4  10145  ingru  10834  genpss  11023  genpnnp  11024  tgcl  22912  txlm  23591  upgrpredgv  29123  3wlkdlem4  30148  frgrwopreglem5  30307  frgrwopreglem5ALT  30308  icorempo  37374  ax12eq  38964  ax12el  38965  odd2prm2  47699
  Copyright terms: Public domain W3C validator