| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantrd 491 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 4 | 3 | adantld 490 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| 5 | 2, 4 | anim12ii 618 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: im2anan9r 621 anim12 808 mo4 2566 trin 5246 somo 5605 xpss12 5674 f1oun 6842 poxp 8132 soxp 8133 brecop 8829 dfac5lem4 10145 ingru 10834 genpss 11023 genpnnp 11024 tgcl 22912 txlm 23591 upgrpredgv 29123 3wlkdlem4 30148 frgrwopreglem5 30307 frgrwopreglem5ALT 30308 icorempo 37374 ax12eq 38964 ax12el 38965 odd2prm2 47699 |
| Copyright terms: Public domain | W3C validator |