Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantrd 495 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
4 | 3 | adantld 494 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
5 | 2, 4 | anim12ii 620 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: im2anan9r 623 anim12 808 trin 5148 somo 5479 xpss12 5539 f1oun 6621 poxp 7827 soxp 7828 brecop 8400 ingru 10275 genpss 10464 genpnnp 10465 tgcl 21669 txlm 22348 upgrpredgv 27031 3wlkdlem4 28046 frgrwopreglem5 28205 frgrwopreglem5ALT 28206 icorempo 35048 ax12eq 36517 ax12el 36518 odd2prm2 44603 |
Copyright terms: Public domain | W3C validator |