Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantrd 492 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
4 | 3 | adantld 491 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
5 | 2, 4 | anim12ii 618 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: im2anan9r 621 anim12 806 trin 5201 somo 5540 xpss12 5604 f1oun 6735 poxp 7969 soxp 7970 brecop 8599 ingru 10571 genpss 10760 genpnnp 10761 tgcl 22119 txlm 22799 upgrpredgv 27509 3wlkdlem4 28526 frgrwopreglem5 28685 frgrwopreglem5ALT 28686 icorempo 35522 ax12eq 36955 ax12el 36956 odd2prm2 45170 |
Copyright terms: Public domain | W3C validator |