| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
| Ref | Expression |
|---|---|
| im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantrd 491 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 4 | 3 | adantld 490 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| 5 | 2, 4 | anim12ii 618 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: im2anan9r 621 anim12 808 mo4 2559 trin 5226 somo 5585 xpss12 5653 f1oun 6819 poxp 8107 soxp 8108 brecop 8783 dfac5lem4 10079 ingru 10768 genpss 10957 genpnnp 10958 tgcl 22856 txlm 23535 upgrpredgv 29066 3wlkdlem4 30091 frgrwopreglem5 30250 frgrwopreglem5ALT 30251 icorempo 37339 ax12eq 38934 ax12el 38935 odd2prm2 47719 |
| Copyright terms: Public domain | W3C validator |