MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 610
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 473 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 474 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4anim12d 599 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388
This theorem is referenced by:  im2anan9r  611  trin  5038  somo  5359  xpss12  5419  f1oun  6461  poxp  7624  soxp  7625  brecop  8186  ingru  10031  genpss  10220  genpnnp  10221  tgcl  21275  txlm  21954  upgrpredgv  26621  3wlkdlem4  27685  frgrwopreglem5  27849  frgrwopreglem5ALT  27850  icorempt2  34039  ax12eq  35500  ax12el  35501  odd2prm2  43225
  Copyright terms: Public domain W3C validator