![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > im2anan9 | Structured version Visualization version GIF version |
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) |
Ref | Expression |
---|---|
im2anan9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 473 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜒)) |
3 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
4 | 3 | adantl 474 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜏 → 𝜂)) |
5 | 2, 4 | anim12d 599 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: im2anan9r 611 trin 5038 somo 5359 xpss12 5419 f1oun 6461 poxp 7624 soxp 7625 brecop 8186 ingru 10031 genpss 10220 genpnnp 10221 tgcl 21275 txlm 21954 upgrpredgv 26621 3wlkdlem4 27685 frgrwopreglem5 27849 frgrwopreglem5ALT 27850 icorempt2 34039 ax12eq 35500 ax12el 35501 odd2prm2 43225 |
Copyright terms: Public domain | W3C validator |