Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoideu Structured version   Visualization version   GIF version

Theorem rngoideu 35988
Description: The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoideu (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝐻,𝑥   𝑢,𝑋,𝑥   𝑢,𝑅,𝑥

Proof of Theorem rngoideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . 4 𝐺 = (1st𝑅)
2 ringi.2 . . . 4 𝐻 = (2nd𝑅)
3 ringi.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3rngoi 35984 . . 3 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢𝑋𝑥𝑋𝑦𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))))
54simprrd 770 . 2 (𝑅 ∈ RingOps → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
6 simpl 482 . . . . . . 7 (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑥) = 𝑥)
76ralimi 3086 . . . . . 6 (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥)
8 oveq2 7263 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢𝐻𝑥) = (𝑢𝐻𝑦))
9 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
108, 9eqeq12d 2754 . . . . . . 7 (𝑥 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑦))
1110rspcv 3547 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥 → (𝑢𝐻𝑦) = 𝑦))
127, 11syl5 34 . . . . 5 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑦) = 𝑦))
13 simpr 484 . . . . . . 7 (((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑥𝐻𝑦) = 𝑥)
1413ralimi 3086 . . . . . 6 (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥)
15 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐻𝑦) = (𝑢𝐻𝑦))
16 id 22 . . . . . . . 8 (𝑥 = 𝑢𝑥 = 𝑢)
1715, 16eqeq12d 2754 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥𝐻𝑦) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑢))
1817rspcv 3547 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥 → (𝑢𝐻𝑦) = 𝑢))
1914, 18syl5 34 . . . . 5 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑢𝐻𝑦) = 𝑢))
2012, 19im2anan9r 620 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → ((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢)))
21 eqtr2 2762 . . . . 5 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑦 = 𝑢)
2221equcomd 2023 . . . 4 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑢 = 𝑦)
2320, 22syl6 35 . . 3 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦))
2423rgen2 3126 . 2 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)
25 oveq1 7262 . . . . 5 (𝑢 = 𝑦 → (𝑢𝐻𝑥) = (𝑦𝐻𝑥))
2625eqeq1d 2740 . . . 4 (𝑢 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑦𝐻𝑥) = 𝑥))
2726ovanraleqv 7279 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
2827reu4 3661 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
295, 24, 28sylanblrc 589 1 (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  AbelOpcablo 28807  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-rngo 35980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator