Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoideu Structured version   Visualization version   GIF version

Theorem rngoideu 37911
Description: The unity element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoideu (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝐻,𝑥   𝑢,𝑋,𝑥   𝑢,𝑅,𝑥

Proof of Theorem rngoideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . 4 𝐺 = (1st𝑅)
2 ringi.2 . . . 4 𝐻 = (2nd𝑅)
3 ringi.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3rngoi 37907 . . 3 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢𝑋𝑥𝑋𝑦𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))))
54simprrd 773 . 2 (𝑅 ∈ RingOps → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
6 simpl 482 . . . . . . 7 (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑥) = 𝑥)
76ralimi 3082 . . . . . 6 (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥)
8 oveq2 7440 . . . . . . . 8 (𝑥 = 𝑦 → (𝑢𝐻𝑥) = (𝑢𝐻𝑦))
9 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
108, 9eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑦))
1110rspcv 3617 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥 → (𝑢𝐻𝑦) = 𝑦))
127, 11syl5 34 . . . . 5 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑦) = 𝑦))
13 simpr 484 . . . . . . 7 (((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑥𝐻𝑦) = 𝑥)
1413ralimi 3082 . . . . . 6 (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥)
15 oveq1 7439 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐻𝑦) = (𝑢𝐻𝑦))
16 id 22 . . . . . . . 8 (𝑥 = 𝑢𝑥 = 𝑢)
1715, 16eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥𝐻𝑦) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑢))
1817rspcv 3617 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥 → (𝑢𝐻𝑦) = 𝑢))
1914, 18syl5 34 . . . . 5 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑢𝐻𝑦) = 𝑢))
2012, 19im2anan9r 621 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → ((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢)))
21 eqtr2 2760 . . . . 5 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑦 = 𝑢)
2221equcomd 2017 . . . 4 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑢 = 𝑦)
2320, 22syl6 35 . . 3 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦))
2423rgen2 3198 . 2 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)
25 oveq1 7439 . . . . 5 (𝑢 = 𝑦 → (𝑢𝐻𝑥) = (𝑦𝐻𝑥))
2625eqeq1d 2738 . . . 4 (𝑢 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑦𝐻𝑥) = 𝑥))
2726ovanraleqv 7456 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
2827reu4 3736 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
295, 24, 28sylanblrc 590 1 (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  ∃!wreu 3377   × cxp 5682  ran crn 5685  wf 6556  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  AbelOpcablo 30564  RingOpscrngo 37902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-1st 8015  df-2nd 8016  df-rngo 37903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator