MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistan Structured version   Visualization version   GIF version

Theorem imdistan 568
Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
Assertion
Ref Expression
imdistan ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem imdistan
StepHypRef Expression
1 pm5.42 544 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (𝜓 → (𝜑𝜒))))
2 impexp 451 . 2 (((𝜑𝜓) → (𝜑𝜒)) ↔ (𝜑 → (𝜓 → (𝜑𝜒))))
31, 2bitr4i 277 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  imdistand  571  rmoim  3675  ss2rab  4004  marypha2lem3  9196  ismhp3  21333  inxpss3  36449
  Copyright terms: Public domain W3C validator