MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem3 Structured version   Visualization version   GIF version

Theorem marypha2lem3 9480
Description: Lemma for marypha2 9482. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6961 . . . . . . 7 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
21biimpi 215 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
32adantl 480 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4 df-mpt 5237 . . . . 5 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
53, 4eqtrdi 2782 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
6 marypha2lem.t . . . . . 6 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
76marypha2lem2 9479 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
87a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
95, 8sseq12d 4013 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
10 ssopab2bw 5553 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
119, 10bitrdi 286 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥)))))
12 19.21v 1935 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))))
13 imdistan 566 . . . . . 6 ((𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
1413albii 1814 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
15 fvex 6914 . . . . . . 7 (𝐺𝑥) ∈ V
16 eleq1 2814 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (𝐹𝑥) ↔ (𝐺𝑥) ∈ (𝐹𝑥)))
1715, 16ceqsalv 3502 . . . . . 6 (∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥)) ↔ (𝐺𝑥) ∈ (𝐹𝑥))
1817imbi2i 335 . . . . 5 ((𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
1912, 14, 183bitr3i 300 . . . 4 (∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2019albii 1814 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
21 df-ral 3052 . . 3 (∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2220, 21bitr4i 277 . 2 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥))
2311, 22bitrdi 286 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wcel 2099  wral 3051  wss 3947  {csn 4633   ciun 5001  {copab 5215  cmpt 5236   × cxp 5680   Fn wfn 6549  cfv 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fn 6557  df-fv 6562
This theorem is referenced by:  marypha2  9482
  Copyright terms: Public domain W3C validator