MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem3 Structured version   Visualization version   GIF version

Theorem marypha2lem3 8552
Description: Lemma for marypha2 8554. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6432 . . . . . . 7 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
21biimpi 207 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
32adantl 473 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4 df-mpt 4891 . . . . 5 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
53, 4syl6eq 2815 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
6 marypha2lem.t . . . . . 6 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
76marypha2lem2 8551 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
87a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
95, 8sseq12d 3796 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
10 ssopab2b 5165 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
119, 10syl6bb 278 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥)))))
12 19.21v 2034 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))))
13 imdistan 563 . . . . . 6 ((𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
1413albii 1914 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
15 fvex 6390 . . . . . . 7 (𝐺𝑥) ∈ V
16 eleq1 2832 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (𝐹𝑥) ↔ (𝐺𝑥) ∈ (𝐹𝑥)))
1715, 16ceqsalv 3386 . . . . . 6 (∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥)) ↔ (𝐺𝑥) ∈ (𝐹𝑥))
1817imbi2i 327 . . . . 5 ((𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
1912, 14, 183bitr3i 292 . . . 4 (∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2019albii 1914 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
21 df-ral 3060 . . 3 (∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2220, 21bitr4i 269 . 2 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥))
2311, 22syl6bb 278 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wcel 2155  wral 3055  wss 3734  {csn 4336   ciun 4678  {copab 4873  cmpt 4890   × cxp 5277   Fn wfn 6065  cfv 6070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-iota 6033  df-fun 6072  df-fn 6073  df-fv 6078
This theorem is referenced by:  marypha2  8554
  Copyright terms: Public domain W3C validator