| Step | Hyp | Ref
| Expression |
| 1 | | dffn5 6967 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 2 | 1 | biimpi 216 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 3 | 2 | adantl 481 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 4 | | df-mpt 5226 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} |
| 5 | 3, 4 | eqtrdi 2793 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) |
| 6 | | marypha2lem.t |
. . . . . 6
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
| 7 | 6 | marypha2lem2 9476 |
. . . . 5
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 8 | 7 | a1i 11 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) |
| 9 | 5, 8 | sseq12d 4017 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐺 ⊆ 𝑇 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))})) |
| 10 | | ssopab2bw 5552 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
| 11 | 9, 10 | bitrdi 287 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐺 ⊆ 𝑇 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))))) |
| 12 | | 19.21v 1939 |
. . . . 5
⊢
(∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥)))) |
| 13 | | imdistan 567 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 → (𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
| 14 | 13 | albii 1819 |
. . . . 5
⊢
(∀𝑦(𝑥 ∈ 𝐴 → (𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥))) ↔ ∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
| 15 | | fvex 6919 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
| 16 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦 ∈ (𝐹‘𝑥) ↔ (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |
| 17 | 15, 16 | ceqsalv 3521 |
. . . . . 6
⊢
(∀𝑦(𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥)) ↔ (𝐺‘𝑥) ∈ (𝐹‘𝑥)) |
| 18 | 17 | imbi2i 336 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → ∀𝑦(𝑦 = (𝐺‘𝑥) → 𝑦 ∈ (𝐹‘𝑥))) ↔ (𝑥 ∈ 𝐴 → (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |
| 19 | 12, 14, 18 | 3bitr3i 301 |
. . . 4
⊢
(∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) ↔ (𝑥 ∈ 𝐴 → (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |
| 20 | 19 | albii 1819 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |
| 21 | | df-ral 3062 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐺‘𝑥) ∈ (𝐹‘𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |
| 22 | 20, 21 | bitr4i 278 |
. 2
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))) ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹‘𝑥)) |
| 23 | 11, 22 | bitrdi 287 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐺 ⊆ 𝑇 ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹‘𝑥))) |