Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdistani | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | anc2li 555 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Copyright terms: Public domain | W3C validator |