| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistani | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 555 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Copyright terms: Public domain | W3C validator |