| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss3 | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an intersection with a Cartesian product is a subclass (see also inxpss 38246). (Contributed by Peter Mazsa, 8-Mar-2019.) |
| Ref | Expression |
|---|---|
| inxpss3 | ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 5743 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
| 2 | brinxp2 5743 | . . . . 5 ⊢ (𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦)) | |
| 3 | 1, 2 | imbi12i 350 | . . . 4 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦))) |
| 4 | imdistan 567 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦))) | |
| 5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
| 6 | 5 | 2albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
| 7 | r2al 3182 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ∀wral 3050 ∩ cin 3930 class class class wbr 5123 × cxp 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 |
| This theorem is referenced by: inxpss2 38250 |
| Copyright terms: Public domain | W3C validator |