Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss3 | Structured version Visualization version GIF version |
Description: Two ways to say that an intersection with a Cartesian product is a subclass (see also inxpss 36374). (Contributed by Peter Mazsa, 8-Mar-2019.) |
Ref | Expression |
---|---|
inxpss3 | ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 5655 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
2 | brinxp2 5655 | . . . . 5 ⊢ (𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦)) | |
3 | 1, 2 | imbi12i 350 | . . . 4 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦))) |
4 | imdistan 567 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑆𝑦))) | |
5 | 3, 4 | bitr4i 277 | . . 3 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
6 | 5 | 2albii 1824 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
7 | r2al 3124 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
8 | 6, 7 | bitr4i 277 | 1 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥(𝑆 ∩ (𝐴 × 𝐵))𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 class class class wbr 5070 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 |
This theorem is referenced by: inxpss2 36377 |
Copyright terms: Public domain | W3C validator |