MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rab Structured version   Visualization version   GIF version

Theorem ss2rab 3875
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 3105 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3105 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2sseq12i 3828 . 2 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)})
4 ss2ab 3867 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 df-ral 3101 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 imdistan 559 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
76albii 1904 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
85, 7bitr2i 267 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) ↔ ∀𝑥𝐴 (𝜑𝜓))
93, 4, 83bitri 288 1 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635  wcel 2156  {cab 2792  wral 3096  {crab 3100  wss 3769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rab 3105  df-in 3776  df-ss 3783
This theorem is referenced by:  ss2rabdv  3880  ss2rabi  3881  mptexgf  6710  scottex  8995  ondomon  9670  eltsms  22149  xrlimcnp  24909  wwlksnfi  27043  disjxwwlkn  27051  occon  28474  spanss  28535  chpssati  29550  lpssat  34793  lssatle  34795  lssat  34796  atlatle  35100  pmaple  35541  diaord  36828  mapdordlem2  37418  rmxyelqirr  37976  itgoss  38234  ovnsslelem  41256  ovolval5lem3  41350  pimiooltgt  41403  preimageiingt  41412  preimaleiinlt  41413
  Copyright terms: Public domain W3C validator