![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rab | Structured version Visualization version GIF version |
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
ss2rab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3407 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | df-rab 3407 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
3 | 1, 2 | sseq12i 3975 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | ss2ab 4017 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
5 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
6 | imdistan 569 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
7 | 6 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
8 | 5, 7 | bitr2i 276 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2710 ∀wral 3061 {crab 3406 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rab 3407 df-v 3446 df-in 3918 df-ss 3928 |
This theorem is referenced by: ss2rabdv 4034 ss2rabi 4035 ondomon 10504 eltsms 23500 xrlimcnp 26334 chpssati 31347 lpssat 37521 lssatle 37523 lssat 37524 atlatle 37828 pmaple 38270 diaord 39556 mapdordlem2 40146 rmxyelqirrOLD 41277 ss2rabdf 43453 pimiooltgt 45037 preimageiingt 45047 preimaleiinlt 45048 |
Copyright terms: Public domain | W3C validator |