MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rab Structured version   Visualization version   GIF version

Theorem ss2rab 4004
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 3073 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3073 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2sseq12i 3951 . 2 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)})
4 ss2ab 3993 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 df-ral 3069 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 imdistan 568 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
76albii 1822 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
85, 7bitr2i 275 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) ↔ ∀𝑥𝐴 (𝜑𝜓))
93, 4, 83bitri 297 1 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2106  {cab 2715  wral 3064  {crab 3068  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  ss2rabdv  4009  ss2rabi  4010  mptexgf  7098  scottex  9643  ondomon  10319  eltsms  23284  xrlimcnp  26118  wwlksnfi  28271  disjxwwlkn  28278  occon  29649  spanss  29710  chpssati  30725  lpssat  37027  lssatle  37029  lssat  37030  atlatle  37334  pmaple  37775  diaord  39061  mapdordlem2  39651  rmxyelqirr  40732  itgoss  40988  ovnsslelem  44098  ovolval5lem3  44192  pimiooltgt  44247  preimageiingt  44257  preimaleiinlt  44258
  Copyright terms: Public domain W3C validator