MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rab Structured version   Visualization version   GIF version

Theorem ss2rab 4018
Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
ss2rab ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem ss2rab
StepHypRef Expression
1 df-rab 3397 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3397 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2sseq12i 3961 . 2 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)})
4 ss2ab 4010 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐴𝜓)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 df-ral 3049 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 imdistan 567 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
76albii 1820 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
85, 7bitr2i 276 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) ↔ ∀𝑥𝐴 (𝜑𝜓))
93, 4, 83bitri 297 1 ({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2113  {cab 2711  wral 3048  {crab 3396  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rab 3397  df-ss 3915
This theorem is referenced by:  eltsms  24049  chpssati  32345  lpssat  39132  lssatle  39134  lssat  39135  atlatle  39439  diaord  41166  mapdordlem2  41756
  Copyright terms: Public domain W3C validator