| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoim | Structured version Visualization version GIF version | ||
| Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmoim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3049 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 2 | imdistan 567 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 3 | 2 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 5 | moim 2541 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 6 | df-rmo 3347 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 7 | df-rmo 3347 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| 9 | 4, 8 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∃*wmo 2535 ∀wral 3048 ∃*wrmo 3346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-ral 3049 df-rmo 3347 |
| This theorem is referenced by: rmoimia 3696 reuimrmo 3700 2rmorex 3709 2reurex 3715 disjss2 5063 catideu 17583 rinvmod 19720 frlmup4 21740 evlseu 22019 2ndcdisj 23372 2sqreulem1 27385 2sqreunnlem1 27388 poimirlem18 37698 poimirlem21 37701 |
| Copyright terms: Public domain | W3C validator |