MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoim Structured version   Visualization version   GIF version

Theorem rmoim 3746
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 3062 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
2 imdistan 567 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
32albii 1819 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
41, 3bitri 275 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 moim 2544 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥(𝑥𝐴𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
6 df-rmo 3380 . . 3 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
7 df-rmo 3380 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
85, 6, 73imtr4g 296 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
94, 8sylbi 217 1 (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2108  ∃*wmo 2538  wral 3061  ∃*wrmo 3379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2540  df-ral 3062  df-rmo 3380
This theorem is referenced by:  rmoimia  3747  reuimrmo  3751  2rmorex  3760  2reurex  3766  disjss2  5113  catideu  17718  rinvmod  19824  frlmup4  21821  evlseu  22107  2ndcdisj  23464  2sqreulem1  27490  2sqreunnlem1  27493  poimirlem18  37645  poimirlem21  37648
  Copyright terms: Public domain W3C validator