MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp3 Structured version   Visualization version   GIF version

Theorem ismhp3 21556
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ismhp3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Distinct variable groups:   ,𝐼   𝑁,𝑑   𝐷,𝑑   0 ,𝑑   𝑋,𝑑   𝜑,𝑑
Allowed substitution hints:   𝜑()   𝐵(,𝑑)   𝐷()   𝑃(,𝑑)   𝑅(,𝑑)   𝐻(,𝑑)   𝐼(𝑑)   𝑁()   𝑉(,𝑑)   𝑊(,𝑑)   𝑋()   0 ()

Proof of Theorem ismhp3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
8 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ismhp 21554 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
10 ismhp2.1 . . 3 (𝜑𝑋𝐵)
1110biantrurd 534 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
12 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
132, 12, 3, 5, 10mplelf 21427 . . . . . . . 8 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1413ffnd 6673 . . . . . . 7 (𝜑𝑋 Fn 𝐷)
154fvexi 6860 . . . . . . . 8 0 ∈ V
1615a1i 11 . . . . . . 7 (𝜑0 ∈ V)
17 elsuppfng 8105 . . . . . . 7 ((𝑋 Fn 𝐷𝑋𝐵0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
1814, 10, 16, 17syl3anc 1372 . . . . . 6 (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
19 oveq2 7369 . . . . . . . . 9 (𝑔 = 𝑑 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑑))
2019eqeq1d 2735 . . . . . . . 8 (𝑔 = 𝑑 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑑) = 𝑁))
2120elrab 3649 . . . . . . 7 (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))
2221a1i 11 . . . . . 6 (𝜑 → (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2318, 22imbi12d 345 . . . . 5 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))))
24 imdistan 569 . . . . 5 ((𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2523, 24bitr4di 289 . . . 4 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ (𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
2625albidv 1924 . . 3 (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
27 dfss2 3934 . . 3 ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
28 df-ral 3062 . . 3 (∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
2926, 27, 283bitr4g 314 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
309, 11, 293bitr2d 307 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3447  wss 3914  ccnv 5636  cima 5640   Fn wfn 6495  cfv 6500  (class class class)co 7361   supp csupp 8096  m cmap 8771  Fincfn 8889  cn 12161  0cn0 12421  Basecbs 17091  s cress 17120  0gc0g 17329   Σg cgsu 17330  fldccnfld 20819   mPoly cmpl 21331   mHomP cmhp 21542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-sca 17157  df-vsca 17158  df-tset 17160  df-psr 21334  df-mpl 21336  df-mhp 21546
This theorem is referenced by:  mhpsclcl  21560  mhpvarcl  21561  mhpmulcl  21562
  Copyright terms: Public domain W3C validator