MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp3 Structured version   Visualization version   GIF version

Theorem ismhp3 20891
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ismhp3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Distinct variable groups:   ,𝐼   𝑁,𝑑   𝐷,𝑑   0 ,𝑑   𝑋,𝑑   𝜑,𝑑
Allowed substitution hints:   𝜑()   𝐵(,𝑑)   𝐷()   𝑃(,𝑑)   𝑅(,𝑑)   𝐻(,𝑑)   𝐼(𝑑)   𝑁()   𝑉(,𝑑)   𝑊(,𝑑)   𝑋()   0 ()

Proof of Theorem ismhp3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
8 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ismhp 20889 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
10 ismhp2.1 . . 3 (𝜑𝑋𝐵)
1110biantrurd 536 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
12 eqid 2758 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
132, 12, 3, 5, 10mplelf 20768 . . . . . . . 8 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1413ffnd 6503 . . . . . . 7 (𝜑𝑋 Fn 𝐷)
154fvexi 6676 . . . . . . . 8 0 ∈ V
1615a1i 11 . . . . . . 7 (𝜑0 ∈ V)
17 elsuppfng 7849 . . . . . . 7 ((𝑋 Fn 𝐷𝑋𝐵0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
1814, 10, 16, 17syl3anc 1368 . . . . . 6 (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
19 oveq2 7163 . . . . . . . . 9 (𝑔 = 𝑑 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑑))
2019eqeq1d 2760 . . . . . . . 8 (𝑔 = 𝑑 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑑) = 𝑁))
2120elrab 3604 . . . . . . 7 (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))
2221a1i 11 . . . . . 6 (𝜑 → (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2318, 22imbi12d 348 . . . . 5 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))))
24 imdistan 571 . . . . 5 ((𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2523, 24bitr4di 292 . . . 4 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ (𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
2625albidv 1921 . . 3 (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
27 dfss2 3880 . . 3 ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
28 df-ral 3075 . . 3 (∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
2926, 27, 283bitr4g 317 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
309, 11, 293bitr2d 310 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wne 2951  wral 3070  {crab 3074  Vcvv 3409  wss 3860  ccnv 5526  cima 5530   Fn wfn 6334  cfv 6339  (class class class)co 7155   supp csupp 7840  m cmap 8421  Fincfn 8532  cn 11679  0cn0 11939  Basecbs 16546  s cress 16547  0gc0g 16776   Σg cgsu 16777  fldccnfld 20171   mPoly cmpl 20673   mHomP cmhp 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-tset 16647  df-psr 20676  df-mpl 20678  df-mhp 20881
This theorem is referenced by:  mhpsclcl  20895  mhpvarcl  20896  mhpmulcl  20897
  Copyright terms: Public domain W3C validator