![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismhp3 | Structured version Visualization version GIF version |
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ismhp3 | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | mhpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ismhp 21994 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
10 | ismhp2.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 10 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
12 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 2, 12, 3, 5, 10 | mplelf 21869 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
14 | 13 | ffnd 6709 | . . . . . . 7 ⊢ (𝜑 → 𝑋 Fn 𝐷) |
15 | 4 | fvexi 6896 | . . . . . . . 8 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
17 | elsuppfng 8150 | . . . . . . 7 ⊢ ((𝑋 Fn 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) | |
18 | 14, 10, 16, 17 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) |
19 | oveq2 7410 | . . . . . . . . 9 ⊢ (𝑔 = 𝑑 → ((ℂfld ↾s ℕ0) Σg 𝑔) = ((ℂfld ↾s ℕ0) Σg 𝑑)) | |
20 | 19 | eqeq1d 2726 | . . . . . . . 8 ⊢ (𝑔 = 𝑑 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁 ↔ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
21 | 20 | elrab 3676 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
23 | 18, 22 | imbi12d 344 | . . . . 5 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
24 | imdistan 567 | . . . . 5 ⊢ ((𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
25 | 23, 24 | bitr4di 289 | . . . 4 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ (𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
26 | 25 | albidv 1915 | . . 3 ⊢ (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
27 | dfss2 3961 | . . 3 ⊢ ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) | |
28 | df-ral 3054 | . . 3 ⊢ (∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
29 | 26, 27, 28 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
30 | 9, 11, 29 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 {crab 3424 Vcvv 3466 ⊆ wss 3941 ◡ccnv 5666 “ cima 5670 Fn wfn 6529 ‘cfv 6534 (class class class)co 7402 supp csupp 8141 ↑m cmap 8817 Fincfn 8936 ℕcn 12210 ℕ0cn0 12470 Basecbs 17145 ↾s cress 17174 0gc0g 17386 Σg cgsu 17387 ℂfldccnfld 21230 mPoly cmpl 21770 mHomP cmhp 21984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-tset 17217 df-psr 21773 df-mpl 21775 df-mhp 21991 |
This theorem is referenced by: mhpsclcl 22000 mhpvarcl 22001 mhpmulcl 22002 |
Copyright terms: Public domain | W3C validator |