Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismhp3 | Structured version Visualization version GIF version |
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ismhp3 | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | mhpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ismhp 21081 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
10 | ismhp2.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 10 | biantrurd 536 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
12 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 2, 12, 3, 5, 10 | mplelf 20960 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
14 | 13 | ffnd 6546 | . . . . . . 7 ⊢ (𝜑 → 𝑋 Fn 𝐷) |
15 | 4 | fvexi 6731 | . . . . . . . 8 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
17 | elsuppfng 7912 | . . . . . . 7 ⊢ ((𝑋 Fn 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) | |
18 | 14, 10, 16, 17 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) |
19 | oveq2 7221 | . . . . . . . . 9 ⊢ (𝑔 = 𝑑 → ((ℂfld ↾s ℕ0) Σg 𝑔) = ((ℂfld ↾s ℕ0) Σg 𝑑)) | |
20 | 19 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑔 = 𝑑 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁 ↔ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
21 | 20 | elrab 3602 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
23 | 18, 22 | imbi12d 348 | . . . . 5 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
24 | imdistan 571 | . . . . 5 ⊢ ((𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
25 | 23, 24 | bitr4di 292 | . . . 4 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ (𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
26 | 25 | albidv 1928 | . . 3 ⊢ (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
27 | dfss2 3886 | . . 3 ⊢ ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) | |
28 | df-ral 3066 | . . 3 ⊢ (∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
29 | 26, 27, 28 | 3bitr4g 317 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
30 | 9, 11, 29 | 3bitr2d 310 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 {crab 3065 Vcvv 3408 ⊆ wss 3866 ◡ccnv 5550 “ cima 5554 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 supp csupp 7903 ↑m cmap 8508 Fincfn 8626 ℕcn 11830 ℕ0cn0 12090 Basecbs 16760 ↾s cress 16784 0gc0g 16944 Σg cgsu 16945 ℂfldccnfld 20363 mPoly cmpl 20865 mHomP cmhp 21069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-tset 16821 df-psr 20868 df-mpl 20870 df-mhp 21073 |
This theorem is referenced by: mhpsclcl 21087 mhpvarcl 21088 mhpmulcl 21089 |
Copyright terms: Public domain | W3C validator |