MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp3 Structured version   Visualization version   GIF version

Theorem ismhp3 21685
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ismhp3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Distinct variable groups:   ,𝐼   𝑁,𝑑   𝐷,𝑑   0 ,𝑑   𝑋,𝑑   𝜑,𝑑
Allowed substitution hints:   𝜑()   𝐵(,𝑑)   𝐷()   𝑃(,𝑑)   𝑅(,𝑑)   𝐻(,𝑑)   𝐼(𝑑)   𝑁()   𝑉(,𝑑)   𝑊(,𝑑)   𝑋()   0 ()

Proof of Theorem ismhp3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
8 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ismhp 21683 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
10 ismhp2.1 . . 3 (𝜑𝑋𝐵)
1110biantrurd 533 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
12 eqid 2732 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
132, 12, 3, 5, 10mplelf 21556 . . . . . . . 8 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1413ffnd 6718 . . . . . . 7 (𝜑𝑋 Fn 𝐷)
154fvexi 6905 . . . . . . . 8 0 ∈ V
1615a1i 11 . . . . . . 7 (𝜑0 ∈ V)
17 elsuppfng 8154 . . . . . . 7 ((𝑋 Fn 𝐷𝑋𝐵0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
1814, 10, 16, 17syl3anc 1371 . . . . . 6 (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
19 oveq2 7416 . . . . . . . . 9 (𝑔 = 𝑑 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑑))
2019eqeq1d 2734 . . . . . . . 8 (𝑔 = 𝑑 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑑) = 𝑁))
2120elrab 3683 . . . . . . 7 (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))
2221a1i 11 . . . . . 6 (𝜑 → (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2318, 22imbi12d 344 . . . . 5 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))))
24 imdistan 568 . . . . 5 ((𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2523, 24bitr4di 288 . . . 4 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ (𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
2625albidv 1923 . . 3 (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
27 dfss2 3968 . . 3 ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
28 df-ral 3062 . . 3 (∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
2926, 27, 283bitr4g 313 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
309, 11, 293bitr2d 306 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  wss 3948  ccnv 5675  cima 5679   Fn wfn 6538  cfv 6543  (class class class)co 7408   supp csupp 8145  m cmap 8819  Fincfn 8938  cn 12211  0cn0 12471  Basecbs 17143  s cress 17172  0gc0g 17384   Σg cgsu 17385  fldccnfld 20943   mPoly cmpl 21458   mHomP cmhp 21671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-psr 21461  df-mpl 21463  df-mhp 21675
This theorem is referenced by:  mhpsclcl  21689  mhpvarcl  21690  mhpmulcl  21691
  Copyright terms: Public domain W3C validator