Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismhp3 | Structured version Visualization version GIF version |
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ismhp3 | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | mhpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ismhp 21429 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
10 | ismhp2.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 10 | biantrurd 533 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
12 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 2, 12, 3, 5, 10 | mplelf 21302 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
14 | 13 | ffnd 6646 | . . . . . . 7 ⊢ (𝜑 → 𝑋 Fn 𝐷) |
15 | 4 | fvexi 6833 | . . . . . . . 8 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
17 | elsuppfng 8048 | . . . . . . 7 ⊢ ((𝑋 Fn 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) | |
18 | 14, 10, 16, 17 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) |
19 | oveq2 7337 | . . . . . . . . 9 ⊢ (𝑔 = 𝑑 → ((ℂfld ↾s ℕ0) Σg 𝑔) = ((ℂfld ↾s ℕ0) Σg 𝑑)) | |
20 | 19 | eqeq1d 2738 | . . . . . . . 8 ⊢ (𝑔 = 𝑑 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁 ↔ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
21 | 20 | elrab 3634 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
23 | 18, 22 | imbi12d 344 | . . . . 5 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
24 | imdistan 568 | . . . . 5 ⊢ ((𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
25 | 23, 24 | bitr4di 288 | . . . 4 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ (𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
26 | 25 | albidv 1922 | . . 3 ⊢ (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
27 | dfss2 3917 | . . 3 ⊢ ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) | |
28 | df-ral 3062 | . . 3 ⊢ (∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
29 | 26, 27, 28 | 3bitr4g 313 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
30 | 9, 11, 29 | 3bitr2d 306 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 {crab 3403 Vcvv 3441 ⊆ wss 3897 ◡ccnv 5613 “ cima 5617 Fn wfn 6468 ‘cfv 6473 (class class class)co 7329 supp csupp 8039 ↑m cmap 8678 Fincfn 8796 ℕcn 12066 ℕ0cn0 12326 Basecbs 17001 ↾s cress 17030 0gc0g 17239 Σg cgsu 17240 ℂfldccnfld 20695 mPoly cmpl 21207 mHomP cmhp 21417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-tset 17070 df-psr 21210 df-mpl 21212 df-mhp 21421 |
This theorem is referenced by: mhpsclcl 21435 mhpvarcl 21436 mhpmulcl 21437 |
Copyright terms: Public domain | W3C validator |