MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp3 Structured version   Visualization version   GIF version

Theorem ismhp3 22061
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ismhp3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Distinct variable groups:   ,𝐼   𝑁,𝑑   𝐷,𝑑   0 ,𝑑   𝑋,𝑑   𝜑,𝑑
Allowed substitution hints:   𝜑()   𝐵(,𝑑)   𝐷()   𝑃(,𝑑)   𝑅(,𝑑)   𝐻(,𝑑)   𝐼(𝑑)   𝑁()   𝑉(,𝑑)   𝑊(,𝑑)   𝑋()   0 ()

Proof of Theorem ismhp3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
8 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ismhp 22059 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
10 ismhp2.1 . . 3 (𝜑𝑋𝐵)
1110biantrurd 532 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
12 eqid 2728 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
132, 12, 3, 5, 10mplelf 21934 . . . . . . . 8 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1413ffnd 6718 . . . . . . 7 (𝜑𝑋 Fn 𝐷)
154fvexi 6906 . . . . . . . 8 0 ∈ V
1615a1i 11 . . . . . . 7 (𝜑0 ∈ V)
17 elsuppfng 8169 . . . . . . 7 ((𝑋 Fn 𝐷𝑋𝐵0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
1814, 10, 16, 17syl3anc 1369 . . . . . 6 (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
19 oveq2 7423 . . . . . . . . 9 (𝑔 = 𝑑 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑑))
2019eqeq1d 2730 . . . . . . . 8 (𝑔 = 𝑑 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑑) = 𝑁))
2120elrab 3681 . . . . . . 7 (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))
2221a1i 11 . . . . . 6 (𝜑 → (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2318, 22imbi12d 344 . . . . 5 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))))
24 imdistan 567 . . . . 5 ((𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2523, 24bitr4di 289 . . . 4 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ (𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
2625albidv 1916 . . 3 (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
27 dfss2 3965 . . 3 ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
28 df-ral 3058 . . 3 (∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
2926, 27, 283bitr4g 314 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
309, 11, 293bitr2d 307 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wne 2936  wral 3057  {crab 3428  Vcvv 3470  wss 3945  ccnv 5672  cima 5676   Fn wfn 6538  cfv 6543  (class class class)co 7415   supp csupp 8160  m cmap 8839  Fincfn 8958  cn 12237  0cn0 12497  Basecbs 17174  s cress 17203  0gc0g 17415   Σg cgsu 17416  fldccnfld 21273   mPoly cmpl 21833   mHomP cmhp 22049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-psr 21836  df-mpl 21838  df-mhp 22056
This theorem is referenced by:  mhpsclcl  22065  mhpvarcl  22066  mhpmulcl  22067
  Copyright terms: Public domain W3C validator