MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp3 Structured version   Visualization version   GIF version

Theorem ismhp3 21996
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ismhp3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Distinct variable groups:   ,𝐼   𝑁,𝑑   𝐷,𝑑   0 ,𝑑   𝑋,𝑑   𝜑,𝑑
Allowed substitution hints:   𝜑()   𝐵(,𝑑)   𝐷()   𝑃(,𝑑)   𝑅(,𝑑)   𝐻(,𝑑)   𝐼(𝑑)   𝑁()   𝑉(,𝑑)   𝑊(,𝑑)   𝑋()   0 ()

Proof of Theorem ismhp3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
4 mhpfval.0 . . 3 0 = (0g𝑅)
5 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpfval.i . . 3 (𝜑𝐼𝑉)
7 mhpfval.r . . 3 (𝜑𝑅𝑊)
8 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ismhp 21994 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
10 ismhp2.1 . . 3 (𝜑𝑋𝐵)
1110biantrurd 532 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
12 eqid 2724 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
132, 12, 3, 5, 10mplelf 21869 . . . . . . . 8 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1413ffnd 6709 . . . . . . 7 (𝜑𝑋 Fn 𝐷)
154fvexi 6896 . . . . . . . 8 0 ∈ V
1615a1i 11 . . . . . . 7 (𝜑0 ∈ V)
17 elsuppfng 8150 . . . . . . 7 ((𝑋 Fn 𝐷𝑋𝐵0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
1814, 10, 16, 17syl3anc 1368 . . . . . 6 (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 )))
19 oveq2 7410 . . . . . . . . 9 (𝑔 = 𝑑 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑑))
2019eqeq1d 2726 . . . . . . . 8 (𝑔 = 𝑑 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑑) = 𝑁))
2120elrab 3676 . . . . . . 7 (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))
2221a1i 11 . . . . . 6 (𝜑 → (𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2318, 22imbi12d 344 . . . . 5 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁))))
24 imdistan 567 . . . . 5 ((𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)) ↔ ((𝑑𝐷 ∧ (𝑋𝑑) ≠ 0 ) → (𝑑𝐷 ∧ ((ℂflds0) Σg 𝑑) = 𝑁)))
2523, 24bitr4di 289 . . . 4 (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ (𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
2625albidv 1915 . . 3 (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁))))
27 dfss2 3961 . . 3 ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
28 df-ral 3054 . . 3 (∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑𝐷 → ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
2926, 27, 283bitr4g 314 . 2 (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
309, 11, 293bitr2d 307 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ ∀𝑑𝐷 ((𝑋𝑑) ≠ 0 → ((ℂflds0) Σg 𝑑) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  wne 2932  wral 3053  {crab 3424  Vcvv 3466  wss 3941  ccnv 5666  cima 5670   Fn wfn 6529  cfv 6534  (class class class)co 7402   supp csupp 8141  m cmap 8817  Fincfn 8936  cn 12210  0cn0 12470  Basecbs 17145  s cress 17174  0gc0g 17386   Σg cgsu 17387  fldccnfld 21230   mPoly cmpl 21770   mHomP cmhp 21984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-uz 12821  df-fz 13483  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-tset 17217  df-psr 21773  df-mpl 21775  df-mhp 21991
This theorem is referenced by:  mhpsclcl  22000  mhpvarcl  22001  mhpmulcl  22002
  Copyright terms: Public domain W3C validator