Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismhp3 | Structured version Visualization version GIF version |
Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ismhp3 | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | mhpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ismhp 21331 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
10 | ismhp2.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 10 | biantrurd 533 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 2, 12, 3, 5, 10 | mplelf 21204 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
14 | 13 | ffnd 6601 | . . . . . . 7 ⊢ (𝜑 → 𝑋 Fn 𝐷) |
15 | 4 | fvexi 6788 | . . . . . . . 8 ⊢ 0 ∈ V |
16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
17 | elsuppfng 7986 | . . . . . . 7 ⊢ ((𝑋 Fn 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ V) → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) | |
18 | 14, 10, 16, 17 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ (𝑋 supp 0 ) ↔ (𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ))) |
19 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑔 = 𝑑 → ((ℂfld ↾s ℕ0) Σg 𝑔) = ((ℂfld ↾s ℕ0) Σg 𝑑)) | |
20 | 19 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑔 = 𝑑 → (((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁 ↔ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
21 | 20 | elrab 3624 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
23 | 18, 22 | imbi12d 345 | . . . . 5 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
24 | imdistan 568 | . . . . 5 ⊢ ((𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)) ↔ ((𝑑 ∈ 𝐷 ∧ (𝑋‘𝑑) ≠ 0 ) → (𝑑 ∈ 𝐷 ∧ ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
25 | 23, 24 | bitr4di 289 | . . . 4 ⊢ (𝜑 → ((𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ (𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
26 | 25 | albidv 1923 | . . 3 ⊢ (𝜑 → (∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁)))) |
27 | dfss2 3907 | . . 3 ⊢ ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑(𝑑 ∈ (𝑋 supp 0 ) → 𝑑 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) | |
28 | df-ral 3069 | . . 3 ⊢ (∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁) ↔ ∀𝑑(𝑑 ∈ 𝐷 → ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | |
29 | 26, 27, 28 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
30 | 9, 11, 29 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3432 ⊆ wss 3887 ◡ccnv 5588 “ cima 5592 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 ↑m cmap 8615 Fincfn 8733 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 ↾s cress 16941 0gc0g 17150 Σg cgsu 17151 ℂfldccnfld 20597 mPoly cmpl 21109 mHomP cmhp 21319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-psr 21112 df-mpl 21114 df-mhp 21323 |
This theorem is referenced by: mhpsclcl 21337 mhpvarcl 21338 mhpmulcl 21339 |
Copyright terms: Public domain | W3C validator |