![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in13 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
in13 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in32 4241 | . 2 ⊢ ((𝐵 ∩ 𝐶) ∩ 𝐴) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
2 | incom 4220 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐵 ∩ 𝐶) ∩ 𝐴) | |
3 | incom 4220 | . 2 ⊢ (𝐶 ∩ (𝐵 ∩ 𝐴)) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4i 2775 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-in 3973 |
This theorem is referenced by: inin 32559 |
Copyright terms: Public domain | W3C validator |