Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > in13 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
in13 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in32 4155 | . 2 ⊢ ((𝐵 ∩ 𝐶) ∩ 𝐴) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
2 | incom 4135 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐵 ∩ 𝐶) ∩ 𝐴) | |
3 | incom 4135 | . 2 ⊢ (𝐶 ∩ (𝐵 ∩ 𝐴)) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4i 2776 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 |
This theorem is referenced by: inin 30862 |
Copyright terms: Public domain | W3C validator |