Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > in13 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
in13 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in32 4169 | . 2 ⊢ ((𝐵 ∩ 𝐶) ∩ 𝐴) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
2 | incom 4149 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐵 ∩ 𝐶) ∩ 𝐴) | |
3 | incom 4149 | . 2 ⊢ (𝐶 ∩ (𝐵 ∩ 𝐴)) = ((𝐵 ∩ 𝐴) ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4i 2774 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∩ cin 3897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-in 3905 |
This theorem is referenced by: inin 31150 |
Copyright terms: Public domain | W3C validator |