MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in13 Structured version   Visualization version   GIF version

Theorem in13 4170
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in13 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))

Proof of Theorem in13
StepHypRef Expression
1 in32 4169 . 2 ((𝐵𝐶) ∩ 𝐴) = ((𝐵𝐴) ∩ 𝐶)
2 incom 4149 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐵𝐶) ∩ 𝐴)
3 incom 4149 . 2 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
41, 2, 33eqtr4i 2774 1 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905
This theorem is referenced by:  inin  31150
  Copyright terms: Public domain W3C validator