MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in13 Structured version   Visualization version   GIF version

Theorem in13 4211
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in13 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))

Proof of Theorem in13
StepHypRef Expression
1 in32 4210 . 2 ((𝐵𝐶) ∩ 𝐴) = ((𝐵𝐴) ∩ 𝐶)
2 incom 4189 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐵𝐶) ∩ 𝐴)
3 incom 4189 . 2 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
41, 2, 33eqtr4i 2767 1 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-in 3938
This theorem is referenced by:  inin  32463
  Copyright terms: Public domain W3C validator