Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inin Structured version   Visualization version   GIF version

Theorem inin 32543
Description: Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
inin (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem inin
StepHypRef Expression
1 in13 4238 . 2 (𝐴 ∩ (𝐴𝐵)) = (𝐵 ∩ (𝐴𝐴))
2 inidm 4234 . . 3 (𝐴𝐴) = 𝐴
32ineq2i 4224 . 2 (𝐵 ∩ (𝐴𝐴)) = (𝐵𝐴)
4 incom 4216 . 2 (𝐵𝐴) = (𝐴𝐵)
51, 3, 43eqtri 2766 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  cin 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-in 3969
This theorem is referenced by:  measinb2  34203
  Copyright terms: Public domain W3C validator