![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inin | Structured version Visualization version GIF version |
Description: Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
inin | ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in13 4047 | . 2 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐵 ∩ (𝐴 ∩ 𝐴)) | |
2 | inidm 4043 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | ineq2i 4034 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐴)) = (𝐵 ∩ 𝐴) |
4 | incom 4028 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2806 | 1 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∩ cin 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-in 3799 |
This theorem is referenced by: measinb2 30892 |
Copyright terms: Public domain | W3C validator |