![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inin | Structured version Visualization version GIF version |
Description: Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
inin | ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in13 4252 | . 2 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐵 ∩ (𝐴 ∩ 𝐴)) | |
2 | inidm 4248 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | ineq2i 4238 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐴)) = (𝐵 ∩ 𝐴) |
4 | incom 4230 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: measinb2 34179 |
Copyright terms: Public domain | W3C validator |