![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inin | Structured version Visualization version GIF version |
Description: Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
inin | ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in13 4238 | . 2 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐵 ∩ (𝐴 ∩ 𝐴)) | |
2 | inidm 4234 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | ineq2i 4224 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐴)) = (𝐵 ∩ 𝐴) |
4 | incom 4216 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2766 | 1 ⊢ (𝐴 ∩ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 |
This theorem is referenced by: measinb2 34203 |
Copyright terms: Public domain | W3C validator |