MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in12 Structured version   Visualization version   GIF version

Theorem in12 4188
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in12 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem in12
StepHypRef Expression
1 incom 4168 . . 3 (𝐴𝐵) = (𝐵𝐴)
21ineq1i 4175 . 2 ((𝐴𝐵) ∩ 𝐶) = ((𝐵𝐴) ∩ 𝐶)
3 inass 4187 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
4 inass 4187 . 2 ((𝐵𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴𝐶))
52, 3, 43eqtr3i 2760 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-in 3918
This theorem is referenced by:  in32  4189  in31  4191  in4  4193  resdmres  6193  kmlem12  10091  ressress  17193  fh1  31520  fh2  31521  mdslmd3i  32234  bj-inrab3  36890
  Copyright terms: Public domain W3C validator