| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in12 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
| Ref | Expression |
|---|---|
| in12 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4184 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | ineq1i 4191 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐵 ∩ 𝐴) ∩ 𝐶) |
| 3 | inass 4203 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
| 4 | inass 4203 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
| 5 | 2, 3, 4 | 3eqtr3i 2766 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 |
| This theorem is referenced by: in32 4205 in31 4207 in4 4209 resdmres 6221 kmlem12 10176 ressress 17268 fh1 31599 fh2 31600 mdslmd3i 32313 bj-inrab3 36947 |
| Copyright terms: Public domain | W3C validator |