![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in12 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in12 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | ineq1i 4237 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐵 ∩ 𝐴) ∩ 𝐶) |
3 | inass 4249 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
4 | inass 4249 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2776 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: in32 4251 in31 4253 in4 4255 resdmres 6263 kmlem12 10231 ressress 17307 fh1 31650 fh2 31651 mdslmd3i 32364 bj-inrab3 36895 |
Copyright terms: Public domain | W3C validator |