MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in12 Structured version   Visualization version   GIF version

Theorem in12 4181
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in12 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem in12
StepHypRef Expression
1 incom 4162 . . 3 (𝐴𝐵) = (𝐵𝐴)
21ineq1i 4169 . 2 ((𝐴𝐵) ∩ 𝐶) = ((𝐵𝐴) ∩ 𝐶)
3 inass 4180 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
4 inass 4180 . 2 ((𝐵𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴𝐶))
52, 3, 43eqtr3i 2773 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-in 3918
This theorem is referenced by:  in32  4182  in31  4184  in4  4186  resdmres  6185  kmlem12  10098  ressress  17130  fh1  30563  fh2  30564  mdslmd3i  31277  bj-inrab3  35402
  Copyright terms: Public domain W3C validator