Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > in12 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in12 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | ineq1i 4139 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐵 ∩ 𝐴) ∩ 𝐶) |
3 | inass 4150 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
4 | inass 4150 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2774 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: in32 4152 in31 4154 in4 4156 resdmres 6124 kmlem12 9848 ressress 16884 fh1 29881 fh2 29882 mdslmd3i 30595 bj-inrab3 35044 |
Copyright terms: Public domain | W3C validator |