MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in12 Structured version   Visualization version   GIF version

Theorem in12 4236
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in12 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem in12
StepHypRef Expression
1 incom 4216 . . 3 (𝐴𝐵) = (𝐵𝐴)
21ineq1i 4223 . 2 ((𝐴𝐵) ∩ 𝐶) = ((𝐵𝐴) ∩ 𝐶)
3 inass 4235 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
4 inass 4235 . 2 ((𝐵𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴𝐶))
52, 3, 43eqtr3i 2770 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  cin 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-in 3969
This theorem is referenced by:  in32  4237  in31  4239  in4  4241  resdmres  6253  kmlem12  10199  ressress  17293  fh1  31646  fh2  31647  mdslmd3i  32360  bj-inrab3  36911
  Copyright terms: Public domain W3C validator