![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in12 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in12 | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4216 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | ineq1i 4223 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐵 ∩ 𝐴) ∩ 𝐶) |
3 | inass 4235 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
4 | inass 4235 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∩ 𝐶) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2770 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 |
This theorem is referenced by: in32 4237 in31 4239 in4 4241 resdmres 6253 kmlem12 10199 ressress 17293 fh1 31646 fh2 31647 mdslmd3i 32360 bj-inrab3 36911 |
Copyright terms: Public domain | W3C validator |