Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > incomOLD | Structured version Visualization version GIF version |
Description: Obsolete version of incom 4091 as of 12-Dec-2023. Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
incomOLD | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 464 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3859 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3859 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 306 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
5 | 4 | eqriv 2735 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-in 3850 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |