MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incomOLD Structured version   Visualization version   GIF version

Theorem incomOLD 4092
Description: Obsolete version of incom 4091 as of 12-Dec-2023. Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
incomOLD (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem incomOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ancom 464 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
2 elin 3859 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3 elin 3859 . . 3 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
41, 2, 33bitr4i 306 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ (𝐵𝐴))
54eqriv 2735 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  cin 3842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-in 3850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator