MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injust Structured version   Visualization version   GIF version

Theorem injust 3893
Description: Soundness justification theorem for df-in 3894. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
injust {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem injust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2821 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2821 . . . 4 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
31, 2anbi12d 631 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝐵) ↔ (𝑧𝐴𝑧𝐵)))
43cbvabv 2811 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
5 eleq1w 2821 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
6 eleq1w 2821 . . . 4 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
75, 6anbi12d 631 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴𝑧𝐵) ↔ (𝑦𝐴𝑦𝐵)))
87cbvabv 2811 . 2 {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
94, 8eqtri 2766 1 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator