Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isolatiN | Structured version Visualization version GIF version |
Description: Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isolati.1 | ⊢ 𝐾 ∈ Lat |
isolati.2 | ⊢ 𝐾 ∈ OP |
Ref | Expression |
---|---|
isolatiN | ⊢ 𝐾 ∈ OL |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolati.1 | . 2 ⊢ 𝐾 ∈ Lat | |
2 | isolati.2 | . 2 ⊢ 𝐾 ∈ OP | |
3 | isolat 37226 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 𝐾 ∈ OL |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Latclat 18149 OPcops 37186 OLcol 37188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ol 37192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |