Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isolatiN Structured version   Visualization version   GIF version

Theorem isolatiN 39172
Description: Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isolati.1 𝐾 ∈ Lat
isolati.2 𝐾 ∈ OP
Assertion
Ref Expression
isolatiN 𝐾 ∈ OL

Proof of Theorem isolatiN
StepHypRef Expression
1 isolati.1 . 2 𝐾 ∈ Lat
2 isolati.2 . 2 𝐾 ∈ OP
3 isolat 39168 . 2 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
41, 2, 3mpbir2an 710 1 𝐾 ∈ OL
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Latclat 18501  OPcops 39128  OLcol 39130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-ol 39134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator