Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isolat | Structured version Visualization version GIF version |
Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
isolat | ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ol 37171 | . 2 ⊢ OL = (Lat ∩ OP) | |
2 | 1 | elin2 4135 | 1 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Latclat 18130 OPcops 37165 OLcol 37167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ol 37171 |
This theorem is referenced by: ollat 37206 olop 37207 isolatiN 37209 |
Copyright terms: Public domain | W3C validator |