Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isolat Structured version   Visualization version   GIF version

Theorem isolat 39213
Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
isolat (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))

Proof of Theorem isolat
StepHypRef Expression
1 df-ol 39179 . 2 OL = (Lat ∩ OP)
21elin2 4203 1 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Latclat 18476  OPcops 39173  OLcol 39175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-in 3958  df-ol 39179
This theorem is referenced by:  ollat  39214  olop  39215  isolatiN  39217
  Copyright terms: Public domain W3C validator