| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isolat | Structured version Visualization version GIF version | ||
| Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| isolat | ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ol 39142 | . 2 ⊢ OL = (Lat ∩ OP) | |
| 2 | 1 | elin2 4178 | 1 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Latclat 18439 OPcops 39136 OLcol 39138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ol 39142 |
| This theorem is referenced by: ollat 39177 olop 39178 isolatiN 39180 |
| Copyright terms: Public domain | W3C validator |