Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isolat Structured version   Visualization version   GIF version

Theorem isolat 39250
Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
isolat (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))

Proof of Theorem isolat
StepHypRef Expression
1 df-ol 39216 . 2 OL = (Lat ∩ OP)
21elin2 4153 1 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Latclat 18334  OPcops 39210  OLcol 39212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-ol 39216
This theorem is referenced by:  ollat  39251  olop  39252  isolatiN  39254
  Copyright terms: Public domain W3C validator