![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isolat | Structured version Visualization version GIF version |
Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
isolat | ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ol 35334 | . 2 ⊢ OL = (Lat ∩ OP) | |
2 | 1 | elin2 4024 | 1 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∈ wcel 2107 Latclat 17431 OPcops 35328 OLcol 35330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-in 3799 df-ol 35334 |
This theorem is referenced by: ollat 35369 olop 35370 isolatiN 35372 |
Copyright terms: Public domain | W3C validator |