Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isolat Structured version   Visualization version   GIF version

Theorem isolat 37205
Description: The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
isolat (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))

Proof of Theorem isolat
StepHypRef Expression
1 df-ol 37171 . 2 OL = (Lat ∩ OP)
21elin2 4135 1 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2109  Latclat 18130  OPcops 37165  OLcol 37167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ol 37171
This theorem is referenced by:  ollat  37206  olop  37207  isolatiN  37209
  Copyright terms: Public domain W3C validator